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1 Introduction

1.1 Motivation

Predicting transcription factor (TF) binding sites in vivo is an essential advance to better understand regulation in the

genome. Though chromatin immunoprecipitation followed by high throughput sequencing (ChIP-seq) has allowed detailed

exploration of a handful of TFs across a number of cell types, tissues and conditions; for many TFs, a specific antibody

does not exist limiting the application of ChIP-seq. ChIP-seq also has requirements for large numbers of cells to correctly

perform the experimental procedure as well as cases where isolating pure cell cultures at such high levels is not possible.

Previous tools and approaches to predict TF binding in vivo have explored a wide variety of features that can assist

in identifying binding sites. These include evolutionary conservation, DNA shape, chromatin accessibility data, DNase I

hypersensitivity footprints, and detailed sequence features [Hesselberth et al., 2009, Ernst et al., 2010, Won et al., 2010,

Chen et al., 2010, Pique-Regi et al., 2011, Neph et al., 2012, Arvey et al., 2012, Yip et al., 2012, Rohr et al., 2013, Sherwood et al., 2014,

Raj et al., 2015, Parra et al., 2016, Liu et al., 2016].

A number of the tools apply statistical approaches to generating predictions including Poisson distributions, Bayesian

mixture models, or linear discriminative analysis (LDA) [Sherwood et al., 2014, Rohr et al., 2013, Liu et al., 2016]. A

second theme across the existing approaches is the use of machine learning in the form of classifiers to generate predictions

for in vivo binding. This includes logistic regression, support vector machines (SVMs) and hidden Markov models (HMMs)

[Ernst et al., 2010, Arvey et al., 2012, Mathelier and Wasserman, 2013].

Although these statistic and machine learning approaches have provided significant improvements to binding site

prediction, their main limitation is the inability to explore the contributing features and their influence on binding

outcomes. For example, a SVM is able to classify a site as bound or unbound but cannot provide any information on

why it has made that decision. By exploring the feature space around TF binding sites in vivo using a Bayesian network

approach, not only will predictions be made about binding, but the features that determine the environment for a binding

event to occur can be queried and explored. A Bayesian network is able to capture relationships and patterns stored in

the feature space making it a powerful tool for better understanding TF binding in vivo. This is particularly important

when dealing with a complex system like the human regulome.

1.2 Novelty

Although Bayesian mixture models have been applied in the context of TF binding site prediction, Bayesian networks have

not. Exploring their efficacy in capturing the feature space and making predictions around binding sites using Bayesian

networks is novel work. Further improving the power of the model by building an ensemble of Bayesian networks to

generating binding site predictions is also a technique that has not been attempted previously in this context.

∗School of Chemistry and Molecular Biosciences, The University of Queensland, Australia.
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2 Methods

2.1 Data selection

The consortium provided binding data for 109 ChIP-seq data sets across 31 transcription factors and 13 cell types. Each

ChIP-seq data set was broken into conserved and relaxed peaks. Conserved peaks were present across multiple replicates

and had an irreproducible discovery rate (IDR) score of < %5 [Li et al., 2011], while relaxed peaks were present in multiple

replicates but had an IDR score > %5. Each ChIP-seq dataset was represented as 200bp windows at intervals of 50bp

across the Human genome using three labels (see Figure 1a). A 200bp window was allocated a label ’U’ (unbound) if

there was no evidence of any ChIP-seq peak at that location. A label of ’A’ (ambiguous) was given to 200bp windows

overlapping a relaxed peak or the edges of conserved peaks. ’B’ (bound) was assigned to windows overlapping conserved

peaks. A set of blacklisted regions which have been shown to contain artificially high signal were excluded from the set

of locations across the genome [ENCODE Project Consortium, 2012]. In total, the consortium provided 60,519,747 labels

for each ChIP-seq data set.

It was not feasible to explore all available locations due to size, time and computational complexity. A maximum of

%0.5 of locations across all ChIP-seq label files were annotated as ’B’ indicating many of the windows did not contain sites

of interest and would therefore not be informative in identifying patterns associated with TF binding. To reduce the size

of the datasets, only locations which fell under the union of all conservative ChIP-seq peaks were explored. This reduced

the number of labels to 8,324,886 and raised the maximum occurrence of ’B’ to %5. Using the union of all ChIP-seq peaks

ensures that individual TF/cell type combinations would contain examples of no binding.

2.2 Feature selection

TF binding events occur at DNA sequence specific locations in the genome and a TF motif, a key feature in identifying

TF binding, is generally <30bps. Each location in the genome was represented by a window of 50bps to capture the

sequence, genetic and epigenetic environment around each binding event. As binding events are dependent on the cell

type specific epigenetic environment as well as the sequence features and motif specific to the TF, for each TF and cell

type combination a dataset was generated.

2.2.1 ChIP-seq labels

Four labels were available from the overlapping 200bp windows provided by the consortium for each 50bp location as seen

in Figure 1b. In round 1, ChIP-seq data was represented as the count of ’B’, from 0-4, occurring above a 50bp window.

In round 2, a state was assigned from 0-13 depending on the count of each label (U, A and B) , as shown in Table 1, to

represent the binding event.

2.2.2 Sequence

The DNA sequence, including variants, to which a TF is known to bind is recorded as a motif. 29 of the 31 TFs being

studied have a DNA motif to which they are known to bind (see Table 2). TAF1 and EP300 do not bind directly to

DNA but rather to other TFs and therefore do not have an associated motif. A motif can be represented by a position

weight matrix (PWM) which can be used to assign a score to a query sequence quantifying how well the sequence matches

the motif. If a 50bp window contains a high scoring match to the motif, this would increase the probability of binding.

Therefore, each 50bp window ± motif length, is scanned to identify the max score matching the TF motif of interest.

It is possible that a TF motif cannot contain a certain base pair/position combination in the PWM resulting in a

probability of 0.0. The PWM scoring method used to explore query sequences operates in log space and cannot handle

values of 0.0 but instead applies a pseudo count of 0.000001. In the case where a query sequence contains the base

pair/position combination with a value of 0.0, the resulting score is an extreme negative value and an outlier. It also

indicates the query sequence is a very poor match for the motif. In round 1, a threshold was applied and PWM scores lower

than -15 were ignored. In round 2, each set of locations was split into 50bp windows which contained a valid sequence,

where all base pairs in the query string matched with a non-zero probability in the PWM, and those that do not (invalid

sequences).
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Figure 1: a) The consortium provided labels (U, A or B) for every 200bp window at 50bp intervals across the Human genome for

each ChIP-seq dataset as shown here. U for unbound regions which did not overlap a ChIP-seq peak. A for ambiguous regions

which overlapped relaxed peaks (present in multiple replicates but had an IDR score > %5) or to represent low confidence edges

of a ChIP-seq peak. B for bound regions which overlap conservative ChIP-seq peaks (IDR score of < %5). b) A 50bp window was

deemed more acceptable for exploring TF binding sites requiring transformation of the data. Given the count of each label above

a 50bp window, a state was assigned to represent the binding event (see Table 1).

U A B State

0 0 4 0

0 4 0 1

4 0 0 2

0 1 3 3

0 2 2 4

0 3 1 5

1 2 1 6

1 3 0 7

2 2 0 8

2 1 1 9

3 1 0 10

1 1 2 11

1 0 3 12

2 0 2 13

Table 1: Given the count of each label above a 50bp window (see Figure 1b), a state was assigned to represent the binding event

leading to 14 possible binding states.

GC content around TF binding motifs has previously been shown to contain differences compared to unbound sequences

[Dror et al., 2015]. It has also previously been used to improve predictions of locations bound by a TF[Liu et al., 2016].

The percentage of G and C across each 50bp window was used to represent GC content.

2.2.3 Cell types for training

Not all cell types are equally informative and the relationships between cell types can vary significantly. To explore the

relationships in the 13 cell types of interest, clustering based on DNase-seq peaks was performed. Given the locations

based on the union of all ChIP-seq labels, a boolean dataset was created describing whether or not the location overlapped

a DNase-seq peak. For each location, 13 states were recorded given the 13 cell types and stored in a tab separated file.

Using R, a correlation matrix was built based on this dataset and then clustered.

mat <− cor ( dataSet )

c l u s t e r s <− h c l u s t ( d i s t (mat) )

plot ( c l u s t e r s )

For round 1, in an attempt to further reduce data size and complexity, the only cell types that were explored in training

were those most closely related to the three final submission cell types: PC-3, induced pluripotent stem cells and liver.
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TF Motif Cell type/s Source

ARID3A MA0151.1 HepG2 [Mathelier et al., 2016]

ATF3 MA0605.1 H1-hESC, HepG2, K562 [Mathelier et al., 2016]

ATF7 MA0834.1 GM12878, HepG2, K562 [Mathelier et al., 2016]

CEBPB MA0466.2 H1-hESC, HeLa-S3, HepG2, K562 [Mathelier et al., 2016]

CREB1 MA0018.2 GM12878, H1-hESC, HepG2, K562 [Mathelier et al., 2016]

CTCF MA0139.1 H1-hESC, HeLa-S3, HepG2, K562 [Mathelier et al., 2016]

E2F1 MA0024.3 GM12878, HeLa-S3 [Mathelier et al., 2016]

E2F6 MA0471.1 H1-hESC, HeLa-S3 [Mathelier et al., 2016]

EGR1 MA0162.2 GM12878, H1-hESC [Mathelier et al., 2016]

EP300 - GM12878, H1-hESC, HeLa-S3, HepG2, K562

FOXA1 MA0148.3 HepG2 [Mathelier et al., 2016]

FOXA2 MA0047.2 HepG2 [Mathelier et al., 2016]

GABPA MA0062.2 GM12878, H1-hESC, HeLa-S3, HepG2 [Mathelier et al., 2016]

HNF4A MA0114.3 HepG2 [Mathelier et al., 2016]

JUND MA0491.1 HeLa-S3, HepG2, K562 [Mathelier et al., 2016]

MAFK MA0496.1 GM12878, H1-hESC, HeLa-S3, HepG2 [Mathelier et al., 2016]

MAX MA0058.3 GM12878, H1-hESC, HeLa-S3, HepG2 [Mathelier et al., 2016]

MYC MA0147.2 HeLa-S3, K562 [Mathelier et al., 2016]

NANOG NANOG HUMAN.H10MO.A H1-hESC [Kulakovskiy et al., 2016]

REST MA0138.2 H1-hESC, HeLa-S3, HepG2 [Mathelier et al., 2016]

RFX5 MA0510.2 GM12878, HeLa-S3 [Mathelier et al., 2016]

SPI1 MA0080.4 GM12878 [Mathelier et al., 2016]

SRF MA0083.3 GM12878, H1-hESC, HepG2, K562 [Mathelier et al., 2016]

STAT3 MA0144.2 HeLa-S3 [Mathelier et al., 2016]

TAF1 - GM12878, H1-hESC, HeLa-S3, K562

TCF12 MA0521.1 GM12878, H1-hESC [Mathelier et al., 2016]

TCF7L2 MA0523.1 HeLa-S3 [Mathelier et al., 2016]

TEAD4 MA0809.1 H1-hESC, HepG2, K562 [Mathelier et al., 2016]

YY1 MA0095.2 GM12878, H1-hESC, HepG2 [Mathelier et al., 2016]

ZNF143 MA0088.2 GM12878, H1-hESC, HeLa-S3, HepG2 [Mathelier et al., 2016]

Table 2: Motif sources
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Figure 2 shows the results of clustering with the final submission cells in blue boxes and the cells used for training in

orange boxes.
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Figure 2: Cell clusters

2.2.4 DNase-seq

For each cell type under consideration, a DNase-seq dataset was provided. Conserved DNase-seq peaks were defined as

having an IDR threshold of < %10 while relaxed peaks were identified in pseudo-replicates but had no IDR threshold

applied [Li et al., 2011]. DNase-seq peaks represent accessible regions of chromatin and, in most cases, a TF requires the

DNA to be accessible to allow binding. The minimum distance was calculated between the edge of each 50bp window

and the nearest DNase-seq peak, with overlaps having a distance of zero, to describe the general chromatin environment

around a binding event.

Where a protein is bound to DNA, e.g. a TF binding event, the activity of DNase I can be blocked leaving evidence

of binding in the form of a DNase hypersensitivity (DHS) footprint. DHS footprints can be found where a TF bind-

ing event has occurred making them valuable in predicting binding events [Hesselberth et al., 2009, Neph et al., 2012,

Sherwood et al., 2014]. There exist situations where a TF will not bind directly to the DNA but will instead bind to

another TF. In this case, knowing that there is a footprint at a location, even if it is not linked to the TF of interest

through a motif, is informative [Neph et al., 2012].

PIQ, the tool used to identify DHS footprints, uses motif scanning to identify putative TF binding sites then uses the

read distributions from the DNase-seq bam file to identify patterns marking DHS footprints. Footprints were identified by

running PIQ on each of the 512 motifs in the JASPAR core 2016 database in every available cell type to identify as many

TF binding sites as possible [Mathelier et al., 2016]. The bam files used were generated by merging all available replicate

bam files from each cell type (K562, PC-3 and MCF-7 were exceptions due to download issues, see Appendix .1). Each

50bp window can then be assigned a distance to the nearest footprint regardless of the motif it is linked to, as well as the

distance to the nearest footprint specific to the current TF.

To better define the environment around a binding site, the number of footprints occurring in a 500bp window is

also recorded. A high number of DHS footprints at a location indicates increased binding activity as they are enriched

at promoter and 5’UTR regions [Neph et al., 2012]. This can mark active promoter or enhancer regions and boost the

likelihood that a TF is bound.

PIQ parameters

The common.r file downloaded from PIQ was not edited. The following commands were used across all JASPAR core

2016 motifs (with the addition of NANOG from HOCOMOCO) for each cell type under consideration.

Rscr ipt pwmmatch . exact . r common . r jaspar CORE 2016 vertebrates . txt \\
motif number m o t i f o u t d i r

Rscr ipt bam2rdata . r DHS out f i l e . RData D H S i n f i l e . bam
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Rscr ipt p e r t f . r common . r m o t i f o u t d i r s c ra t ch / mot i f f o o t p r i n t s o u t d i r \\
DHS out f i l e . RData motif number

The thresholded -calls.csv file in both the forward and reverse direction from each set of called footprints for each motif

in each cell type contains the start coordinate for each footprint. Using the known motif length and the start coordinate,

a bed file was created to describe the location of footprints. A single bed file was created for each cell type to describe

the landscape of identified footprints by merging footprints of individual motifs.

2.2.5 Location and gene expression

TFs can bind in promoter regions, within genes (exonic and intronic) or at enhancer regions which can be 500kbps or

even up to 1mbps from the gene they are regulating [Corradin et al., 2014, Roy et al., 2015]. A promoter region is defined

as ±2000bps around a TSS. Locations outside the promoter region but overlapping a gene are labelled as genic while

all remaining locations are labelled as distal. Promoters and enhancers (i.e. distal locations) contain variations in their

epigenetic environment and are likely to demonstrate different binding patterns. Not only was each 50bp window labelled,

but an absolute distance to the nearest TSS was recorded. Enhancers are known to operate over limited distances therefore,

distance can act as a filter for true binding sites.

The expression pattern of a putative target gene can help identify whether a TF binding site is occupied in vivo. A

50bp window occurring in a promoter region or within a gene was annotated to the nearest gene. For each cell-type-

specific RNA-seq dataset, replicates were merged and the average of the replicate TPM values was assigned to the gene.

Gene symbols were used to match expression values to genomic locations of genes using GenCode annotations (v19)

[Harrow et al., 2012]. The gene’s expression value, as transcripts per million (TPM), was also recorded. When a 50bp

window occurs distally, annotating it to a target gene is more challenging. In this case, the window is assigned the highest

expression value of all genes occurring in a 500kbp window.

To provide more information about the environment around a 50bp window, the count of genes in a 500kbp was

recorded. The human genome has previously been broken down into 3-5 groups of isochores ranging from GC-poor to GC-

rich [Mouchiroud et al., 1991, Zoubak et al., 1996]. GC-rich isochores have been shown to have a higher gene density as

well as an abundance of open chromatin regions compared to the GC-poor, gene-poor isochores [Mouchiroud et al., 1991,

Zoubak et al., 1996, Bernardi, 2005]. While gene deserts fall into GC-poor isochores with general features of inaccessibility

they have been shown to contain enhancer regions and therefore TF binding sites [Nobrega et al., 2003, Sotelo et al., 2010].

2.3 Model construction and training

A Bayesian network is composed of a number of vertices associated with variables (1:1). The variables represent a range

of features that are either observed or latent, in relation to a 50bp window. These variables can be discrete, meaning that

they take on one of a finite number of values, or continuous, meaning that they take on a real value. For each location in

our training data set, we assign observed values to these variables, or leave them unspecified when not known.

Generally, the joint probability of all variables, X1, . . . , XN , in the Bayesian network is given by

P (X1 = x1, . . . , XN = xN ) =

N∏
i=1

P (Xi = xi | pa(Xi))

where pa(Xi) is the set of parents of the ith variable, as indicated by the acyclic graph formed from directed edges between

vertices (parent-to-child).

The parameters of the network define the conditional probabilities associated with each vertex, i.e. the probability of

the variable associated with it, conditioned on the variable’s parents. In this study they are learned from observations in

the data sets using standard Expectation-Maximization to cope with the absence of explicit evidence for variables. The

structure is fixed to accommodate causal relationships that are evident from the literature.

Some child variables are continuous and are here represented by a Gaussian density, meaning that EM finds a mean and

a variance for each possible combination of parent variable assignments. In several cases, the value is first log-transformed

to suit a Gaussian density.
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Node Feature Type State(s)

DistPeak Distance to nearest DNase-seq peak Discrete
0-7: 0, ≤ 50, ≤ 200, ≤ 500, ≤ 1, 000,

≤ 20, 000, ≤ 100, 000, > 100, 000
DistGFoot Distance to nearest non-specific DHS footprint Discrete

DistSFoot Distance to nearest DHS footprint matching TF of interest Discrete

Location Location of window relative to nearest gene Discrete Promoter, Genic or Distal

MotifScore Score from PWM scan of window Real Not transformed

GCcontent Proportion of G and C in window Real Not transformed

GFCount Count of DHS footprints in 500bp window Real log-transformed

Expression Expression value in TPM of target gene Real log-transformed

Overlaps Number of genes in 500kbp window Real log-transformed

Distance Distance to nearest TSS Real log-transformed

Table 3: A record of the nodes in the Bayesian network, the features they represent and their data type.

Inference of P (X | E = e) where X is the (uninstantiated) query variable(s), and E = e is the assigned evidence, is

based on the full joint probability. In order to obtain this value, we marginalise over the set of unobserved variables Y ,

which take values y,

P (X | E = e) = η
∑
y

P (X,E = e, Y = y)

where η is a normalising constant that ensures that conditional probabilities of X’s possible values sum to 1. Any variable

can be inferred in the Bayesian network. When estimating the ability of the model to predict TF binding, we infer

the posterior probability of the variable representing this variability given evidence available for that locus, for instance

sequence composition, and number of repeat copies.

BindingState

DistPeak DistGFoot DistSFoot

DHS_latent

DistanceOverlapsExpression

Gene_latent

Data_latent

Location

Seq_latent

GC_content GFCountMotifScore

Figure 3: The network structure of the model that will be used to capture patterns and relationships from the data. Nodes are

coloured by their input with green being discrete, blue being continuous or real, black as latent (no input) and red representing

the node which will capture binding probabilities (also discrete). Nodes are described in detail in Table 3 and in ’Feature selection’

above. Arrows represent the node edges and conditional dependency between a parent and child node.
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2.4 Ensemble

Combining multiple models can improve overall performance when compared to the performance of individual models. It

also allows the data to be broken into smaller pieces with each model learning features and patterns from independent

datasets. In round 1, averaging across model predictions was used to improve overall performance. In round 2, as shown

by [Garg et al., 2002], a Bayesian network was used to combine predictions from individual Bayesian network models

using the network configuration shown in Figure 4. This is achieved using the same theory as reported above for Bayesian

network training and querying.

Given a set of training data, each individual model is used to generate a prediction for each data point. The predictions,

in this case probabilities from 0− 1, are then fed into the network in Figure 4 with the required number of child nodes to

match the number of input models. The ensemble is trained on data where the binding state is known.

The same process is applied to test data, where a prediction is generated from each individual model then fed into the

ensemble. In this case, the binding state is unknown, and therefore inferred to obtain a final probability of binding for

each test data point.

BindingState

M1 M2 Mn...

Figure 4: The ensemble network structure.

2.5 Training and testing

In round 1, one million data points were generated for each TF. A minimum of ten networks and training cell type specific

datasets were created for each TF. A TF with three training cell types would have twelve models with four from each

different cell type while a TF with two training cell types would have a total of ten models with five from each cell type.

In round 2, three million training data points were generated for each TF with equal numbers of each cell type explored

(e.g. if a TF has two training cell types, each would be used to generate data for 1.5 of the 3 million data points). Each

set of data is then broken into valid and invalid given the results of the PWM scan of the sequence in the 50bp window.

A total of ten individual datasets were created from the valid and invalid sequences with number and size determined by

the split of sequences (e.g. where the majority of data points were valid, eight datasets would be used to capture the valid

sequences while only two would represent the invalid). A valid or invalid model is used to train the broken down data and

the resulting models form the input into the ensemble.

3 Running the code

3.1 Data generation

The features defined above were extracted using a Python script (gen data 9 ṗy) which iterated over each 50bp location,

identified distances to DNase-seq peaks, DHS sites, genes and subsequent features based on these distances (e.g. counts

for footprints and genes, and expression patterns). The script also calculated PWM scores and assigned a binding state

to each location. There are four versions of this script: two for training data which does include a binding state and two

for testing data where this information is not available. Within each, one script is available for TFs containing a motif

while a second version (* nm.py) is adjusted to handle TFs with no motif.

To run the training data generation scripts, the following files are required:

• DNASE.cell.conservative.narrowPeak - as provided by consortium
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• Bed file containing all footprints for cell - as described in 2.2.4

• Bed file containing the footprints for the TF of interest and cell type of interest - as described in 2.2.4

• File containing locations of genes and associated expression values in TPM *

• PWM file representing motif

• ChIP-seq labels for single TF-cell type combination (original 200bp format) **

* The columns in this file are: chromosome, start, end, strand, Ensembl ID, gene symbol, artifact, expression value,

artifact. The two artifact columns must exist but are no longer utilised and can be set to all 1’s.

** The columns in this file are: chromosome, start, end, binding state (U, A or B).

The DNASE peaks, footprint files and label file are all indexed using Tabix and must be bgzip compressed and indexed

using tabix -p bed format [Li, 2011]. The testing scripts do not require the ChIP-seq label file while the scripts for TFs

with no motifs do not require the footprints for a specific TF or the PWM file.

3.2 BNkit

BNkit is currently provided to the organisers as jar files designed to do different tasks relating to training and testing

existing networks and datasets. This Java project is not user ready and exists as an in-house tool. It is challenging to

provide instructions which will allow the organisers to run all required steps, in particularly, generation of networks.

• training.jar will train individual Bayesian networks given a network and dataset and outputs a trained network.

This is used for training all individual models that will be built into ensembles.

– Input: Bayesian network (example provided: dream net CTCF valid 0.out)

– Input: Data set generated by gen data 9 training.py or gen data 9 training nm.py

– Output: Bayesian network (example provided: dream net CTCF valid 0.out trained.new)

• ensemble.jar will identify models that form part of the ensemble, use training data to generate predictions across

all models, use predictions and known binding state to train ensemble, generate predictions across all models for

testing data, then infer binding state using trained ensemble and the predictions from testing data. Much of this

is hardcoded and requires specific file structure. It is not in a state that would be considered ’user friendly’. I am

happy to discuss in more detail but instructions at this stage are not easy to put into words.

4 Discussion

Insights gained during challenge

Many parameters, features and variables were explored, tested, altered, discarded and added throughout the course of

this challenge. In every case, it was in an attempt to provide the model more information that would assist in predicting

true binding sites. To report all would be excessive. What appeared to be most informative was the combination of the

three features describing the DHS peak and footprint data. A significant improvement in performance was gained when

these features were switched from boolean (overlapping window of interest or not) to a distance measure.

Two different Bayesian network approaches were applied through the two rounds of this challenge. Unfortunately, time

ran out to submit during the final submission queue of the first round. When exploring the leaderboard submissions that

were completed using a Bayesian network approach in round 1, no single situation or set of variables could be isolated that

explained why the model performed well on some TFs and poorly on others. All features were explored in an attempt

to correlate certain states that would influence performance in line with the auPRC results obtained from the submitted

data.

The complexity and layers of detailed information stored in the genetic and epigenetic environments of TF binding

sites made determining changes in performance difficult. Some theories include: frequency of TF binding to sites with no
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TF Proportion valid Proportion invalid

ARID3A 0.013 0.011

ATF3 0.015 0.012

ATF7 0.026 0.000

CEBPB 0.023 0.000

CREB1 0.015 0.010

CTCF 0.023 0.000

E2F1 0.007 0.000

E2F6 0.019 0.010

EGR1 0.007 0.004

FOXA1 0.029 0.019

FOXA2 0.035 0.000

GABPA 0.004 0.000

HNF4A 0.011 0.000

JUND 0.082 0.016

MAFK 0.012 0.008

MAX 0.023 0.000

MYC 0.021 0.012

NANOG 0.003 0.000

REST 0.006 0.000

RFX5 0.008 0.000

SPI1 0.030 0.000

SRF 0.003 0.001

STAT3 0.010 0.008

TCF12 0.013 0.006

TCF7L2 0.015 0.015

TEAD4 0.013 0.000

YY1 0.013 0.027

ZNF143 0.015 0.010

Table 4: Given a sample of three million data points across a range of cell types for each TF, broken into locations containing

valid or invalid sequence, what is the proportion of locations mapped to a true binding event? TFs in bold contained fewer than 15

examples of binding at locations with invalid sequence.

specific motif, information content of the motif, epigenetic environment preferred by a TF and cell type specificity of a

TF. Many attempts to improve on the model were made for round 2 but no submissions were made to the leaderboard

round so no results are available to gauge performance improvements.

The main limitation of a Bayesian network approach is its generative nature. In trying to recreate the observed data,

it can struggle when presented sets of variables that may not necessarily have been observed together previously. An

occurrence that turned out to be quite frequent when dealing with data on the scale presented in this challenge. As

described above, the training data was broken into valid and invalid sequences. Very few of the invalid models were

successfully trained using the invalid sequence data. It is likely that the invalid sequence data was sparse in terms of

the relationships and patterns that it captured. Of interest was the fact that many TFs did not contain any instances of

binding at the locations which did not contain valid sequence (see Table 4).

5 DREAM Results

The results included here are preliminary and relate to observations made when participating in the DREAM challenge

rather than outcomes. The focus in this section is identification of areas where improvements could be made.

One method of exploring the relationships modelled by a Bayesian network is to create a test dataset where different

features are specified. For example, one data point may only contain a motif score as input while another may only look

at DHS peak distance. From the controlled test data, a number of predictions are made to observe which features or

feature combinations resulted in the highest predictions. Such tests were performed on models trained using different TFs

and cell types generated for round 1.
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Different TF and cell type model combinations led to vastly different outcomes in binding probability across all features

tested. For example, a model trained on CTCF data in cell type A549 would assign a higher probability of binding than

a model trained in cell type H1-hESC when the input data was a distance of ’0’ to all three DHS features. One general

observation across all models was that including more features led to better performance when the features were set to

favour a binding event given prior biological knowledge.

5.1 Binding is dependent on sequence

A higher motif score generally led to a higher probability of binding across all tested models however, a CTCF model

trained on H1-hESC data assigned a probability of 0.9 to the highest motif, a REST-H1-hESC model predicted 0.78

probability and an E2F6-HeLa model assigned probabilies as low as 0.03. This is an example of the variation of features

observed across TFs and cell types as well as an example of the challenges faced when attempted to extract biological

relevant patterns.

5.2 Chromatin accessibility improves model performance

A significant improvement in performance was gained when the three features describing the DHS peak and footprint data

were switched from boolean (overlapping window of interest or not) to a distance measure. This indicates that the wider

epigenetic environment around a binding site is more informative than the environment immediately over a binding site.

5.3 Cell-type-specificity influences model performance

It has already been noted that models trained on different cell types exhibit different outcomes. It was also observed

that some cell type models were able to make predictions across cell types with comparable accuracy while others could

not. For example, H1-hESC models can make predictions in most other cell types while A549 models cannot do so and

maintain accuracy. This is most likely due to cell-type-specific patterns which influence TF binding and result in the

model identifying different features as associated with increased probability of binding.

In round 2, models were trained on data from multiple cell types rather than individual. This is suspected to be the

main cause for the decrease in performance observed in results from round 2. Merging cell types led to poorer performance,

testing cell-type specific model on other cell type led to generally poorer result. Some cell types are more informative

than others.

5.4 Bayesian networks are sensitive to large, sparse datasets

The main limitation of a Bayesian network approach is its generative nature. In trying to recreate the observed data, it can

struggle when presented sets of variables that may not necessarily have been observed together previously. An occurrence

that turned out to be quite frequent when dealing with data on the scale presented in this challenge. As described above,

the training data was broken into valid and invalid sequences. Very few of the invalid models were successfully trained

using the invalid sequence data. It is likely that the invalid sequence data was sparse in terms of the relationships and

patterns that it captured.

5.5 Bayesian network ensemble provides moderate improvement to performance

The ensemble model always showed better performance than the worst performing model in the set. It did not, how-

ever, provide significant improvements to prediction accuracy and, at best, was a moderate improvement over averaging

predictions from the contributing models.

5.6 Round 1 performance

The performance of a number of predictions submitted to the first round of the challenge compared to the best performing

team’s outcome can be seen in Figure 5.

11



0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

MAF
K_

MCF
-7

TC
F7

L2

ST
AT

3

TE
AD

4

EP
30

0
RE

ST
RF

X5
AT

F2
AR

ID
3A

AT
F7

FO
XA

1

CR
EB

1
AT

F3
TC

F1
2

MYC
ZN

F1
43

CE
BP

B
JU

ND
EG

R1
E2

F6YY
1

TA
F1

GAB
PA

MAX
CT

CF

au
PR

C

Transcription factor

My model

Best model

Figure 5: The auPRC scores across TFs explored by the DREAM challenge for my model compared to the best performing model.

5.7 Round 2 performance

At this stage, final performance outcomes for round 2 have not been released. There is evidence that the final models

submitted here performed worse than those submitted for round 1. However, the main goal was to be able to generate the

datasets and predictions that were required for the final submission. This was an achievement unto itself as a submission

of 60,519,747 predictions for each of 13 datasets was made requiring significant compute time, coordination of code and

elements of parallel processing.

6 Author’s Statement

AE was responsible for construction of code, generation of data, feature identification, model design and submission to the

challenge. MB constructed the Bayesian network code and was essential in idea development as well as providing general

support and guidance. AE and MB both contributed to writing this document.
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Cell type DNase-seq bam files

K562 DNASE.K562.biorep2.techrep12.bam

DNASE.K562.biorep2.techrep18.bam

DNASE.K562.biorep2.techrep3.bam

DNASE.K562.biorep2.techrep14.bam

DNASE.K562.biorep2.techrep1.bam

DNASE.K562.biorep2.techrep5.bam

DNASE.K562.biorep2.techrep16.bam

DNASE.K562.biorep2.techrep2.bam

MCF-7 DNASE.MCF-7.biorep1.techrep1.bam

DNASE.MCF-7.biorep1.techrep2.bam

DNASE.MCF-7.biorep1.techrep4.bam

DNASE.MCF-7.biorep1.techrep5.bam

PC-3 DNASE.PC-3.biorep1.techrep2.bam

DNASE.PC-3.biorep1.techrep3.bam

Table 5: Where download issues were encountered, not all bam files were merged into a single bam file to be passed to PIQ. Recorded

here are the three cell types where problems occurred and the bam files that were successfully merged and used in the analysis.

Appendices

.1 DNase-seq downloads

See Table 5.
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