ldentify functional patterns in
high throughput binding assays



Message

* By clustering ChlP-seq peaks we can identify
different patterns in transcription factor
binding
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Farnham, P.J. Nature Reviews Genetics 10, 605-616 (September 2009)



Why TFs?

* Important role in gene expression, cell
differentiation and homeostasis

Target TF Family TF

NG

Expression levels

G D=

Simple binding

5 el

Homodimer binding

FUCGD) EA—

Heterodimer binding

Secondary TF

STF
™

Co-operation
L
Co-factor

(e —

Co-activator/
Co-repressor




Peak calling

 Raw sequencing data
— Single end reads
— Red mapped ‘forward’, blue mapped ‘reverse’
— Distribution across genome

T
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Input —
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with statistical
significance

Peak calling

l Compared to

To generate




Peak calling

w7 7= e+ Peaks have different
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Peak calling

Confirm in vitro

% results
ATTGCC
’ |dentify consensus
motif
ATTTCC Analyse >,
ATACCC ldentify target

genes of TF



Hypothesis

 We propose that ChIP-seq peaks from a TF
experiment can be clustered based on their
read density or ‘shape’ leading to
identification of different binding modes and
functional patterns of a TF



Previous use of peak shape
* Differential binding

— Compare two conditions
— Compare two TFs
— Based on read depth

* TF binding from DNase | hypersensitivity

TF binding estimation from modelled DNase | hypersensitivity profiles

i .“III”I ‘lllhl ”I|||III'I-I M , s B .I"I'Illll"‘ III'I'l'I“"'I".II gilsg

I l 7\. 1 I l\ )\. 2
& -
Adapted from: Sherwood, R.l., et al. Nature Biotechnology 32(2),171-178 (2014)




Aims

* Develop a modelling technique to identify
functionally relevant clusters, based on ChlP-
seq read density, defining TF binding events

* |dentify functional patterns associated with
clusters and provide more information about

TF binding from ChlP-seq data



Processing peak data
Binding Site aka Peak

5' - 3' reads G 3' - 5 reads

71275957bp 71276457bp
chrl0

Peak Summit
71276207bp

chrlo—
Lt il HEEEEREEEN

Peakl 5 8 14 19 20

25

30

Read pile up showing
distribution of reads in peak

500bp window around summit

Split window into even segments
Count read depth in each segment

27 28 23 18 15 6 2 |

This creates a count vector for each
peak with equal numbers of columns

Combining all count vectors creates a Dirichlet distribution that can

be clustered




Dirichlet clustering

* Dirichlet distribution — distribution of
distributions

* The model is a Dirichlet mixture
* Unsupervised clustering of peaks

* Evidence based clustering using raw
counts

e No normalisation of data



50

Evidence based clustering

Shape of read counts

40

30

20

Peak height

10 +

1 2 3 4 5 6 7 8 9 10
Position

Peak Cluster Peak Cluster
1 A 1
B 1 B 2
C 2 C 3
D 2 D 4

Shape of normalised read counts

5 0.18

9 016

© 0.14

€ 012 -

g 000.; - —— Peak A
% 0:06 __/// e Peak B
‘O 0.04 - Peak C
i 0.02 Peak D
§ 0

1 2 3 4 5 6 7 8 9 10
Position

 Read depth is key and can
be masked by normalisation

e Dirichlet approach does not
require normalisation
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Consensus motifs

Cluster Motif .
:  SP1 motif

e Differentiating feature in cO and c2 is
5> binding affinity or read depth
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Consensus motifs

Cluster Motif e NFY motif

1 jACCAATc e Known interaction between two TFs

ﬂﬂﬂﬂﬂﬂﬂﬂ

c }CCAAT A bimodal peak shape indicates
VAR cA increased NFY binding
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Applications

* Explore TF families by comparing clustering outcomes

* Explore TF dimers using clustering in combination with
in vitro sequence data

* Explore cooperative interactions



Summary

* We successfully clustered ChlP-seq peaks based on
their shape, density and magnitude then
demonstrated how each cluster contains unique,
biologically relevant, features
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Cluster size optimisation

* Minimum description length (MDL)
e Description length (DL)
— A measure of information content and model complexity

e Larger models will always be more complex

Sp1 - search cluster performance

5870000

5867500

5865000

Description Length

5862500

5860000

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Cluster size



Generate signal profile

Define background
along each chromosome

(model or data)

~

Tag shift Control
data

o ChlP-seq peak

calling

st . . ° Shift reads on both
Poshion (bp) l Position(p) = Stra N d S to fin d p eak

T  Compare to control
reads

L * |dentify significant
—— hits according to a
~ l threshold

Filter artifacts

Tag count
Tag count

Tag count

 Remove potential

% \X artefacts

S Position (bp

Computation for ChIP-seq and RNA-seq studies

Shirley Pepke, Barbara Waold & Ali Mortazavi

Mature Methods 6, S22 - 532 (2002) Published online: 15 October 2009
doi:10.1038/nmeth.1371




DNA binding sites
@) TF

DNA Binding Domain

DNA binding sites
ATTGCC ATTTCC ATACCC
Motif Motif Motif

Position Weight Matrix (PWM) _
Consensus Motif

Position A T C G .
1 1 0 0 0 ’
2 0 1 0 0 T
3 |033|066] 0 | 0O 5 1.0-
4 0 0.3310.330.33
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Variation in flanking sequence of TF domains

@ - @&
| |

TF Domain

Flanking sequence

Sequence polymorphism in target DNA

B 6 6

ATTGCC ATTTCC ATACCC

Site accessibility within chromatin landscape

Euchromatin O
(‘open’) ><

ATTTCC ATTTCC

Heterochromatin
(‘closed)



Minimum description length (MDL)
Principle
Calculate model complexity

Calculate smallest data description length
(DDL)

Total DL = sum of complexity and DDL

Plot total DL as number of clusters increases
and search for global minima

Global minima = optimal number of clusters



