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Message 

• By clustering ChIP-seq peaks we can identify 
different patterns in transcription factor 
binding  



ChIP-seq  
experiment 

• Chromatin 
immunoprecipitation 
followed by sequencing 

• To determine where a 
protein binds the 
genome 

• e.g. for a single TF or 
histone modification 

 
Farnham, P.J. Nature Reviews Genetics 10, 605-616 (September 2009) 



Why TFs? 
• Important role in gene expression, cell 

differentiation and homeostasis 



Peak calling 
• Raw sequencing data 

– Single end reads 

– Red mapped ‘forward’, blue mapped ‘reverse’ 

– Distribution across genome 



Peak calling 
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Peak calling 
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• Peaks have different 
features within a ChIP-seq 
experiment 



Peak calling 
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Hypothesis 

• We propose that ChIP-seq peaks from a TF 
experiment can be clustered based on their 
read density or ‘shape’ leading to 
identification of different binding modes and 
functional patterns of a TF 



Previous use of peak shape 

• Differential binding 

– Compare two conditions 

– Compare two TFs 

– Based on read depth 

 

• TF binding from DNase I hypersensitivity 

 

 

1 2 

from modelled DNase I hypersensitivity profiles 

Adapted from: Sherwood, R.I., et al. Nature Biotechnology 32(2),171-178 (2014)  



Aims 

• Develop a modelling technique to identify 
functionally relevant clusters, based on ChIP-
seq read density, defining TF binding events 

 

• Identify functional patterns associated with 
clusters and provide more information about 
TF binding from ChIP-seq data 



Processing peak data 

Combining all count vectors creates a Dirichlet distribution that can 
be clustered 



Dirichlet clustering 

• Dirichlet distribution – distribution of 
distributions 

• The model is a Dirichlet mixture 

• Unsupervised clustering of peaks 

• Evidence based clustering using raw 
counts 

• No normalisation of data 



Evidence based clustering 

• Read depth is key and can 
be masked by normalisation 

• Dirichlet approach does not 
require normalisation 
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Clustering example – SP1 



Genomic location 



Epigenetic environment 



Consensus motifs 

• SP1 motif 

 • Differentiating feature in c0 and c2 is 
binding affinity or read depth 



Consensus motifs 

• NFY motif 

• Known interaction between two TFs 

 
• A bimodal peak shape indicates 

increased NFY binding 

 



Applications 

• Explore TF families by comparing clustering outcomes 

• Explore TF dimers using clustering in combination with 
in vitro sequence data  

• Explore cooperative interactions 



Summary 

• We successfully clustered ChIP-seq peaks based on 
their shape, density and magnitude then 
demonstrated how each cluster contains unique, 
biologically relevant, features 
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Cell type 

GM12878 H1hESC GM12878 H1hESC 



Cluster size optimisation 

• Minimum description length (MDL) 

• Description length (DL)  

– A measure of information content and model complexity 

• Larger models will always be more complex 

 

 

 



ChIP-seq peak 
calling 

• Shift reads on both 
strands to find peak 

• Compare to control 
reads 

• Identify significant 
hits according to a 
threshold 

• Remove potential 
artefacts 



DNA binding sites 

DNA 





Minimum description length (MDL) 
Principle 

• Calculate model complexity 

• Calculate smallest data description length 
(DDL) 

• Total DL = sum of complexity and DDL 

• Plot total DL as number of clusters increases 
and search for global minima 

• Global minima = optimal number of clusters 


