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1 Introduction

Transcription factors (TFs) are a set of proteins with the ability to bind specific DNA sequences

and regulate transcription [19]. They play a key role in regulating genes through the developmental

process and maintaining homeostasis allowing the existence of more complex organisms. TFs and

their ability to provide fine scale control over transcription of genes is a topic of significant interest

to better understand the regulatory processes that take place within an organism. A number

of epigenetic features including histone marks and chromatin state also influence the regulatory

network of the genome. Both types of features can be explored through binding assays to investigate

the influence they have on regulation genome-wide [10]. Mapping binding sites is the first step

in better understanding TFs however, there are more layers of information not provided by the

knowledge that one TF binds in a certain location. Understanding the binding mode or functional

outcome of a TF binding at different binding sites is a more complex task that has yet to be

well resolved. Identifying ways to obtain this knowledge for TFs and potentially other DNA-

binding proteins is vital for deciphering the gene regulatory networks that allow for a wide range

of biological processes [40].

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is an in vivo experiment to

determine where a protein binds the genome. Proteins include transcription factors, DNA-binding

enzymes, histones, chaperones or nucleosomes [2]. This approach is well established as a means of

identifying where a single TF (or other DNA-binding proteins) will bind the DNA in a single cell

type at a specific point in time. The binding sites are identified by analysing the read depth across

the genome and identifying significantly enriched regions using peak calling algorithms [23, 28].

The results from ChIP-seq analysis are often treated as binary in the sense that a TF has or

has not bound to a certain location. The other use of ChIP-seq data is to identify differentially

bound locations when comparing two TFs or conditions. DiffBind is an R program that identifies

significantly differentially bound sites by measuring differences in read densities [49]. Although

this analyses density and magnitude of peak shape, it does so only to identify differences in binding

patterns. No further exploration of the shape, magnitude and density of the read depth across all

peaks has previously been conducted.

After ChIP-seq peak calling, all peaks above the required statistical threshold are treated

equally for motif discovery, target gene discovery, location analysis, epigenetic analysis and other

downstream analyses. It is unlikely that all peaks represent the same TF binding mode and

investigating peak shape is an approach to identify this functionally relevant information.

ChIP-seq is a powerful resource and has provided invaluable information about a number of

TFs and epigenetic marks. However, it is possible that there is information locked in ChIP-seq

data that we are not yet taking advantage of. Recently, Sherwood et al. (2014) [45], showed

that modelling the magnitude and shape of genome-wide DNase I hypersensitivity profiles allowed

identification of TF binding sites. Several other algorithms also exist to infer TF binding from

DNase-seq data [17, 38, 5]. These approaches are examples of new information being gathered
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from a technique not designed to provide that specific information.

We propose that ChIP-seq peaks from a TF experiment can be clustered based on their shape,

density and magnitude leading to identification of different binding modes and functional patterns

of a TF.

1. Develop a modelling technique to identify functionally relevant clusters, based on peak shape

and magnitude.

1.1. Investigate available clustering approaches to identify one suitable for clustering ChIP-

seq data

1.2. Identify and implement the algorithms required to perform clustering, using the selected

technique, on ChIP-seq data

1.3. Process ChIP-seq peak data to create a dataset appropriate for clustering using the

selected technique

1.4. Explore peak shapes represented across clusters and across TFs to identify any common

shapes or patterns

2. Identify biologically relevant data associated with cluster groups to expand knowledge of TF

binding modes, functional patterns and interactions

2.1. Investigate the biological significance of peak shape on TF binding location

2.1.1. Compare the distributions of all peaks and their locations within each cluster

2.1.2. Compare the enrichment of individual locations within each cluster

2.1.3. Identify global patterns linking peak shape to genomic locations

2.2. Investigate the relationship between peak shape and epigenetic data

2.2.1. Explore how peaks within each cluster are annotated by the Broad ChromHMM

data

2.2.1.1. Compare the distributions of chromatin annotations within each cluster

2.2.1.2. Compare the enrichment of individual chromatin annotations within each clus-

ter

2.2.2. Explore whether peaks within each cluster are enriched for specific epigenetic marks

according to the ENCODE dataset (e.g. H3K27ac)

2.2.3. Identify global patterns linking peak shape to epigenetic data

2.3. Investigate the relationship between peak shape and sequence by analysing motifs of

different clusters
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1.1 Role of transcription factors

TFs play an important role in gene expression, cell differentiation and homeostasis. TFs are

also key metabolic and developmental regulators. A TF is defined as having one or more DNA-

binding domains (DBDs) which encode a sequence-specific DNA-binding module. Each TF is

classified by the type of DBD present in the protein. There are four superclasses of TF based on

broad structural similarities: basic, zinc-coordinating, helix-turn-helix and β-scaffold. Domains

outside these four classes are referred to as ’other’ [53]. Depending on the TF, hundreds to tens

of thousands of binding sites can occur throughout the genome. The two most common locations

for TF binding sites (TFBS) are promoter and enhancer regions. Genes consist of a number of

elements when observed in the 5’ to 3’ direction beginning with the promoter, 5’UTR, transcription

start site (TSS), exons and introns, transcription end site (TES), 3’UTR and poly-adenylation tail.

Genes are regulated by enhancer and promoter regions which recruit the transcription machinery

according to TF binding and other signals. Promoter regions occur in the 5’ region near the TSS.

Enhancers can be located at a greater distance from the TSS, can be upstream or downstream and

can even occur within introns. They can operate from a distance using DNA looping.

When a TF binds, there are two outcomes for gene expression; activation or repression. Each

TF has the potential to either activate or repress its target gene and this outcome is dependent

on many of the factors that also influence TF binding.

The interaction between a TF and DNA is complex. To understand the relationship, multiple

variables have to be taken into account. A number of these variables and their impact on TF

binding are discussed including some existing experimental approaches available to tease apart

the complex network of interactions. These variables include chromatin structure and nucleosome

occupancy, and interactions between multiple TFs. TFs do not act alone but form a TF complex

that allows activation or repression of the target gene. The basal transcription machinery, contain-

ing general TFs and Pol II, is required to control transcription. Through another complex called

Mediator, the basal transcriptional machinery connects with TFs binding the DNA [7]. TFs can

bind a broad range of DNA sequences yet manage to control regulation and transcription on a

very fine scale. It is the network of interactions between TFs and the DNA structure which allow

for such fine scale control [46].

1.2 Transcription factor binding

Sequence-specific DNA-binding activity is mediated through the DBD however, not all DBDs have

been classified and sequence-specific DNA-binding can occur without a known DBD. The DNA

sequences recognized by TFs are degenerate and relatively short; between 4 and 20 base pairs

(bps). The sequence is referred to as a motif and can be represented by a consensus sequence,

position weight matrix (PWM) or tables of affinities (or relative affinities) to individual sequences

as seen in Figure 1. There is no ’gold standard’ to represent the actual sequence preferences of a

TF and current motif models may not be sufficient to do so [19].
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Figure 1: A simple schematic demonstrating a hypothetical TF, how it may bind to DNA and how those

binding events are generalised. Three hypothetical binding sites are demonstrated each with variations

in the binding sequence. A PWM is shown based on the frequency of each letter at each position in

the three different sequences. A consensus motif then provides a visual representation based on the data

represented in the PWM.

To understand transcription in an organism requires detailed knowledge of all TFs, and their

binding affinities to all possible DNA sequences [25]. Knowledge of any co-operative binding inter-

actions is also required. Currently, this information is mostly unknown. For example, mammals

have an estimated 1300-2000 TFs but databases such as Jaspar and Uniprobe, which contain in

vivo and in vitro data about DNA-binding motifs and preferences of TFs, only list 590 and 515

non-redundant proteins respectively [20, 25, 36]. Very few bound sequences have been identified

and for many that have been, only a consensus sequence exists which lacks detail. A consensus

sequence represents the DNA sequence bound by the TF with the highest affinity for that sequence

while hiding low affinity or uncommon sequences. Binding between sites and TFs is not binary

and some sites will be bound more strongly and/or frequently than others. The affinity between

a TF and DNA sequence can be affected by a range of factors. This includes flanking sequence of

domains in the TF, sequence polymorphisms in the target DNA sequence, site accessibility within

chromatin regions, cooperation and competition between TFs, concentration of TF and cell type

[19, 53, 25, 13, 16]. Aim 2.3. will explore variations in the motifs of different peak shapes and

separate binding events based on sequence preference. This will highlight how not all TFs bind

consistently to one sequence but instead a degenerate set of sequences that can be separated based

on peak shape.

Two interactions allow the relatively high affinity of a TF to a specific DNA sequence. Non-

sequence specific interactions with the DNA backbone are low affinity and allow the TF to slide

along the DNA until the high affinity, sequence specific interactions with DNA bases immobilizes

the TF to its target site. This immobilization occurs for a sufficient amount of time to allow
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regulation of transcription to occur [25]. The major groove of DNA has substantial potential for

hydrogen bonding and van der Waals’ interactions. Many TFs interact with the major groove of

DNA, but minor groove and phosphate and sugar backbone interactions are also frequent [53, 26].

A TF can be shown to have many predicted binding sites with equal predicted binding affinity

based on in vitro experiments. In vivo, few of these binding sites will be occupied. For a TF

to occupy a site, the site must be accessible. Chromatin higher order structure and nucleosome

occupancy can prevent TF binding by restricting access to sites throughout the genome. An

open or permissive chromatin landscape will allow access of TFs to DNA. This landscape can be

influenced by a range of epigenetic features as well as TF interactions which can recruit chromatin

modifying factors [16, 19]. Aims 2.2. will investigate variations in the epigenetic landscape around

different peak clusters and determine how peak shape is related to site accessibility, chromatin

landscape and other epigenetic marks such as H3K27ac.

1.3 Transcription factor families

Within the superclasses of TFs there exist TF families that use related structural motifs for

recognition [39]. Members of the same TF family will often have highly similar DBDs and higher

order structure but they are rarely identical. They typically have similar DNA binding specificities

yet are capable of executing unique functions in vivo. However, when assayed in vitro, they

generally do not show large differences in binding specificity with consensus motifs consistent

between family members [47]. This indicates that small changes in the target sequence carry

significant meaning when comparing TF binding events.

1.4 Transcription factor domains and interactions

TFs can contain multiple DBDs as well as other domains such as effector domains. TF effector do-

mains can interact with a number of different partners and play a range of roles in transcriptional

regulation. Unlike DBDs, effector domains are more physically unstructured and far less conserved

increasing their binding potential. They can interact with basal transcription machinery, other

TFs, and directly or indirectly recruit histone and chromatin modifying enzymes. Cooperative

interactions between TFs expand the possible DNA sequences recognised in vivo as well as the

binding energetics of the protein-DNA interaction. This influences both the affinity and the out-

come (e.g. target gene expression levels) of TF binding [13, 47]. Exploring the motifs of different

clusters according to Aim 2.3. will highlight interactions between TFs by identifying secondary

upstream or downstream binding sites using spaced motif analysis (SpaMo) [54].

1.4.1 Dimerisation

A number of TF DBD domains allow binding as monomers including zinc finger and homeodomain

containing TFs. Other domains require dimerization to bind to DNA such as TFs containing basic
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helix-loop-helix (bHLH), basic leucine zipper (bZIP) or Rel homology domains. Oligomers or

higher order complexes of three or more TFs can also exist [22, 14].

Formation of dimers between TFs is mediated, in some cases, through effector domains. More

generally, the interaction between two TFs often occurs through the DBDs or adjacent domains

[14, 13]. Dimers are protein-protein interactions between TFs that generally form in solution prior

to binding DNA. Heterodimers form between two different TFs while homodimers exist between

two of the same TFs. Dimerization can both stabilize the structure and induce conformational

changes. In the case of TFs which require dimerization, such as those containing bHLH domains,

dimerization between the DBDs on the two TFs stabilises the dimer allowing contact with the major

groove of DNA to be made. bZIP dimers also function in a similar way [14]. Dimerization increases

the control possible from a limited number of TFs by allowing a large number of combinations to

exist and potentially play different roles. One way dimers can alter transcription is through the

recruitment of different cofactors and transcriptional machinery [46, 29]. The binding sequences

recognized by TFs in dimers can have similarities to the single TF binding sequences but variations

are expected. Heterodimers can recognize half-binding sites comparable to the individual TF’s

motifs arranged in head to tail formation. Heterodimers can also form after DNA binding has

produced allosteric changes in the protein structure of one TF allowing dimer formation [29].

1.4.2 Cooperation, competition and cofactors

Cooperation between TFs is a mechanism that contributes to the fine scale control exerted by

TFs. It allows an increased number of regulatory changes to be made by different combinations

of TFs working together. Three classes of cooperative interactions have been proposed in TFs.

The first, and simplest, involves direct contact between two or more TFs and is described as

mutually cooperative binding. The second class describes two TFs that do not bind cooperatively

to DNA but both bind to a third TF which confers cooperativity and is described as indirect.

The third mechanism describes the additive effect of TFs which bind near one another but lack

protein-protein interactions. This class has an unclear mechanism. [37].

Competition between TFs for binding sites is dependent on the TF copy number, the number

of available binding sites and the affinities to the available binding sites. For example, when two

TFs A and B can bind to the same site, which one will be preferred? If A has a depleted copy

number or other available binding sites with higher affinity, B will be more competitive and more

likely to bind to the site than A [6].

Transcription cofactors can function both independently and in cooperation to fine-tune pro-

moter activity. They achieve this by linking a TF to the transcription complex without requiring

direct binding to the DNA [50, 42]. Latent specificity describes a cofactor induced change in recog-

nition of sequences. It is a theory which describes how differences in amino acid sequence within a

TF family may only impact DNA recognition and binding specificity when bound with cofactors

[47].
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2 Deconvoluting transcription factor binding

All of this evidence paints a complex picture of TF binding in an organism with intricate interac-

tions and a large number of variables. There is not a straightforward process in which a TF binds

to a promoter using a specific, non-degenerate DNA sequence, recruits transcription machinery

and influences the outcome of gene expression. Rather, a TF can bind as a monomer, homodimer

or heterodimer, or oligodimer to a variety of degenerate DNA sequences. This can only occur

when the chromatin landscape allows access and no other competitive features are present on the

DNA. Attempts to unravel some of this information have involved use of both in vitro and in vivo

experimental approaches.

2.1 In vitro approaches

In vitro experiments use purified and/or synthetic components in a test tube. Footprinting and

electrophoretic mobility shift assay (EMSA) are two in vitro techniques that are used to identify TF

binding sites where the motif or binding sequence is unknown [25]. Protein binding microarrays

(PBMs) and one-hybrid interaction analyses are in vitro methods to investigate specific DNA

sequences that proteins bind rather than locations. By investigating TF affinity or specificity to a

specific set of sequences, a clearer picture of what the TF can and cannot bind is provided. PBMs

allow all possible DNA sequence variants of a given length k to be assigned a binding specificity

for a TF using a single microarray [4]. This allows in depth analysis of motif variation, nucleotide

preference and binding site preference at very high resolution. The biggest downside to in vitro

methods is that they do not represent the cellular environment which is known to have a significant

impact on where, and with what affinity, TFs will bind.

2.2 ChIP-seq

ChIP-seq experiments provide a snapshot of genomic sites occupied by the protein of interest, in

this case a TF, in a specific cell line or sample. Once the sites have been obtained, the sequence

of each of those sites can be analysed to discover a consensus sequence to which the TF may bind.

ChIP-seq is an important validation tool for in vitro methods because it describes the natural

environment in which the protein-DNA interaction is occurring [25]. A summary of the ChIP-seq

experimental approach, data processing, quality control and peak callers is included in Appendix

A.

Due to the nature of peak calling algorithms and their stringent cut offs, a significant amount

of data is lost when ChIP-seq data processing is performed. This includes true binding sites with

low affinity or specificity or that may only be present in a small population of cells in the full

sample. Also, smoothing of the peak profile can eliminate two distinct peaks that were located

near one another [2]. The biggest problem with ChIP-seq experiments is that the experimental

steps produce false positive because DNA is pulled down in the immunoprecipitation (IP) step
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when a true binding event is not present. Then, the stringent data processing steps introduce

false negatives to counteract these false positives. ChIP-exo is an in vivo experimental approach

that addresses these concerns as well as problems related to degenerate motifs and low occupancy

binding [44]. As a newer technology there are not as many datasets available as for ChIP-seq and

the approach has not yet become mainstream in investigating TF binding. Exploring ChIP-seq

instead will allow more meaningful information to be extracted from the large number of existing

datasets including ENCODE [9].

2.3 Challenges to ChIP-seq results

ChIP-seq experiments provide information on where TFs bind and based on these binding regions,

motifs can be determined from the sequence. It has also been shown that tag densities at binding

sites indicate binding affinity with higher densities showing higher affinity [27]. A number of

factors can confound the ChIP-seq process. Many of these, specific to TFs, have been mentioned

previously and include dimer formation, chromatin landscape, co-localization, DNA looping to

promote interactions, co-factors and in general, the fact that TFs do not act independently on

transcription. TFs and histone modifications as well as other DNA-bound proteins are known

to work together to carry out cellular functions. When comparing multiple experiments, if there

are indications that different proteins or modifications are binding at the same genomic location,

distinguishing between true co-binding events is difficult. The proteins or modifications may be

present in the same genomic location but in different cells and may appear to be working together

when they are not [15]. MEME is a tool that combines a number of programs all designed to

process ChIP-seq peaks and perform motif analysis [3]. SpaMo is one element of the suite that

attempts to infer physical interactions between the given TF and any TFs bound at neighbouring

sites [54]. Aim 2.3. will investigate how different peak shapes relate to different motifs or binding

partners.

Other examples of confounding effects are more complex to solve. Situations exist where the

TF of interest is bound by its antibody and is not itself bound to DNA but instead to another

TF. The peak describing this interaction will not contain sequence specific to the TF of interest

but rather the TF interacting with DNA. A similar situation can occur when the TF of interest

is bound to an enhancer but has promoted looping in the DNA to bring the enhancer region and

promoter of interest together. In this situation two peaks, one from the true binding event and

one from the interaction between multiple TF, can be present in the ChIP-seq results creating

confusion [10].

In a situation where a dimer is formed, the antibody may be specific to one half of the dimer

pulling down information in which unexpected motifs may be observed. MEME can help to

deconvolute the interaction in some of these cases by reporting motifs for the full dimer or the two

half sites [3, 54]. The antibody could also lose specificity when the TF of interest is in a dimer

preventing identification of a range of sites.
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3 Extracting information from ChIP-seq peaks

Using an unsupervised model which clusters peaks based on the similarity of their peak shapes will

allow exploration of how peak shape relates to a number of biologically relevant factors addressed

by Aim 2. Following Aim 1.3., a dataset will be created that describes each peak and the associated

read depths across a segmented window of set size. By analysing read depth the problem is very

similar to clustering gene expression patterns.

3.1 Clustering approaches

Common methods for clustering gene expression data include K-means clustering and self organiz-

ing maps (SOM). Using a Dirichlet approach to cluster data is something that has not previously

been tested. The method is, however, suited to the problem of clustering the peak shapes within

ChIP-seq data. Dirichlet distributions have previously been used to perform protein multiple se-

quence alignment (MSA) but not clustering of gene expression data [55]. Aim 1.1. will determine

which clustering approach is optimal for this problem. Hierarchical approaches were not consid-

ered because Dirichlet clustering performs a full partition and the nested aspects of hierarchical

clustering restrict conclusions being drawn about specific and unique peak shapes.

3.1.1 K-means

K-means clustering is a common, but basic, method for clustering gene expression data. It is a par-

tition based method which uses an objective function to assign data points to cluster centres which

are data points themselves. It is available in R using Euclidean distance as the method to calculate

distance between data points and cluster centres. To be effective at clustering, normalization of

the data is required. K-means is also sensitive to noise in the data [12, 24].

3.1.2 SOM

SOM are a partition based approach which use a single layered neural network to map each data

point to an output neuron with the closest reference vector. Output neurons are organized using

a grid neighbourhood structure so similar clusters are also closer neighbours. There are a large

number of variables in SOM including the output neuron grid structure, the distance function and

the input data. SOM are very sensitive to noise, particularly datasets that contain invariant or

flat patterns. Data also requires normalization prior to clustering [30, 24]. A SOM algorithm is

available in R through the Kohonen package [51].

Both methods are capable of clustering the read depth data that describes the ChIP-seq peaks.

The performance of Dirichlet clustering will be compared to these two existing methods accord-

ing to Aim 1.1.. The benefits of Dirichlet clustering are attractive if it can perform as well as,

or better, than existing methods. K-means and SOM approaches require normalization of data
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prior to clustering so the first benefit of using a Dirichlet approach is that it does not requiring

normalization.

3.1.3 Dirichlet

Dirichlet clustering using a Gibbs sampling approach creates a Dirichlet mixture model based on

a set of histograms. This mixture model is made up of Dirichlet distributions representing each

cluster. Each Dirichlet distribution in the model generates a probability distribution which will

always add to 1. The probability distribution is discrete and multinomial constraining the original

input data to that of a histogram or set of counts. This approach to clustering histograms is well

suited to ChIP-seq peak data where read depth can be counted across a peak region.

Each peak is represented by a set of counts based on the read depth at intervals across the

peak (restricted to a 500bp window around the peak summit). This creates a set of count vectors

or histograms across all peaks. After each round of clustering, each Dirichlet distribution has a

set of alpha values which represent the ‘shape’ of the cluster and act as the centre of the cluster.

This distribution changes as clustering proceeds and each data point is categorically clustered by

calculating the probability of it belonging to each cluster and assigning it to the cluster with the

highest probability. Updating the model based on new cluster assignments and repeating this

process moves data toward the ‘best’ clustering outcome based on a likelihood value (eq. 7 [55]).

The second key benefit of Dirichlet clustering is that the sum of the alpha values for each peak

indicates how much evidence or support is available in the original data. This allows peaks to

not only be separated by shape but also based on evidence and support. For example, two peaks

X and Y can share a similar shape but peak X has a raw sum of 200 counts and peak Y only

30. Peak X has more evidence to support the shape and will be placed into a different cluster to

peak Y. In K-means or SOM clustering, these two peaks would be treated equally as normalisation

prior to clustering will mask the raw counts. In Dirichlet clustering, the raw counts are available

to the algorithm and this information is taken into account during clustering. A high alpha sum

indicates a strong concentration of data around the centre of the cluster suggesting peaks with

strong evidence belong to the cluster. A low alpha sum indicates a weak concentration or low level

of evidence in the peaks belonging to the cluster.

To calculate the alpha values and perform clustering, a Gibbs sampling approach is used where

the description length (DL) of the data given the model is minimised as convergence is reached

[55]. DL is used in two capacities in this implementation of the Dirichlet algorithm; DL of the data

given the model and DL of the model itself. It is a statistical measure which can be thought of as

representing the complexity of the model based on the information available. The quantity of data

passed to the model has the most influence on the complexity outcome. To measure convergence,

we are calculating the DL of the data given the model as the model parameters are updated [55].

That is, we are attempting to identify the best state of the current model for the data provided.
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3.1.4 Optimal cluster number

In any clustering technique the identification of optimal cluster number is the biggest challenge.

Most techniques require the user to specify the cluster number including all three approaches

discussed here. Without a priori knowledge of the data or having an expected number of clusters

making this selection is difficult. Algorithms exist to calculate the optimal number of clusters for

each of the three approaches.

For Dirichlet clustering the optimisation method is known as the Minimum Description Length

(MDL) principle. It requires training of multiple models for comparison to identify the one that

minimizes the DL of the data given the model, plus the DL of the model itself. For each model, the

best state to represent the data is identified and summed with how complex the model, described

by a Dirichlet mixture, is. The complexity of the model itself is also related to the data but

relies more on analysing the data parameters and content where as the first DL looks at data

probabilities. The complexity or DL of the model will always increase as more clusters introduces

more information that require more complex explanations. The model that minimises the two DL

calculations is the one with the optimal cluster number [55].

3.1.5 Semantic similarity

When clustering gene expression patterns it is common to perform functional analysis. This pro-

vides an insight into the function of the resulting gene sets. A successful clustering will result in

clusters that have different functional patterns. It is therefore possible to compare clustering ap-

proaches by comparing the functional patterns of the resulting gene sets using semantic similarity.

Semantic similarity provides a quantification of the pairwise similarity of every cluster in every

approach based on enriched GO terms. Ideally, clusters will show less similarity when the gene

expression profiles have been clustered effectively. GOSemSim is a package available for R that

takes two gene sets (i.e. cluster 1 and 2 from the Dirichlet approach or cluster 1 from Dirichlet

and K-means), discovers enriched GO terms for each gene set then performs a comparison of the

enriched GO terms taking into account the GO hierarchy and semantic meaning of the words.

This test will form the basis of the comparison for Aim 1.1..

3.2 Peak analysis

Features that could influence cluster formation through peak shape include affinity, location, chro-

matin landscape, epigenetic markers, motif, physical interactions, dimers and more. After success-

fully clustering peaks using a Dirichlet approach, three key analyses will help identify the functional

information linked to peak shape in individual TFs according to the Aims of the project: location

analysis, epigenetic analysis and motif analysis. Understanding these three features and how they

relate to different clusters as well as each other will provide significant functional information.

Identifying functional patterns from ChIP-seq peaks will have widespread applications to a

number of datasets and experiments. It would lead to valuable new information being extracted
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from the thousands of ChIP-seq datasets that already exist. It would refine our understanding of

how TF binding modes play a role in gene expression, development and disease.

4 Methodology

4.1 Data collection

Eight TFs from the ENCODE dataset were selected for study each from a single cell type except

for two, RAD21 and MAX, which had two cell types investigated. TFs included: GABP (H1Hesc),

MAFK (HepG2), MAXGm (GM12878), MAXH1 (H1Hesc), )RAD21 (GM12878), RAD21 (H1Hesc),

RXRA (H1Hesc), SP1 (H1Hesc), SRF (H1Hesc) and TBP (H1Hesc). For selection they required

raw data in the form of bam files, processed narrow peak files, a reported motif and a cell type

that had been included in the Broad Chromatin HMM analysis. Bam files and narrow peak files

were downloaded from Factorbook. Where multiple replicas were available, one was selected for

download randomly. The Chromatin HMM track was downloaded from UCSC.

4.2 Clustering approaches

A dataset containing gene expression data across 10 conditions was obtained for analysis. K-

means, SOM and Dirichlet clustering were all used to generate four clusters, enough clusters to

find meaningful patterns while keeping the required number of comparisons low. Investigating these

three approaches addresses Aim 1.1.. The dataset was also split randomly into 4 different groups

to demonstrate an outcome when clustering was uninformed. A K-means algorithm has been

implemented in the R statistics package. The SOM algorithm is available through the Kohonen

package on R. Both approaches require normalization of data prior to clustering. For K-means,

the data was normalized by dividing each data point in the row by the row sum. The Kohonen

package provides its own normalization function which was used prior to clustering. The Dirichlet

algorithm is implemented in the bnkit package developed by myself and other members of the

Bodén group.

The gene sets were isolated from each of the four clusters using the annotation assigned to each

gene expression profile. The semantic similarity algorithm will accept Entrez gene IDs as input

for the analysis so each gene symbol from the data was converted to the appropriate ID using the

Python MyGene package. Each pairwise semantic similarity comparison was performed by the

GOSemSim package and a matrix was constructed. Each GO term hierarchy (biological process

(BP), cellular component (CC) and molecular function (MF)) was explored separately resulting in

three matrices comparing the similarity of functional patterns across clusters and techniques.
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4.3 Dirichlet clustering

A Dirichlet clustering algorithm had previously been implemented in bnkit by myself and other

members of the Bodén group. This algorithm follows the description in [55] and its implementation

addresses Aim 1.2.. The Gibbs sampling approach was discussed in the Introductory material.

4.3.1 Algorithm

One concern not addressed by the paper was the occurrence and handling of empty clusters.

Empty clusters occur when the available data does not comply with the current distributions

of the clusters. The distribution representing the cluster becomes so unfavourable that no data

points are assigned to it. This prevents clustering reaching completion. [55] states a random

starting point should be used to initialise each distribution however, using a data point from the

data itself reduced the number of situations where empty bins occurred. This approach is similar to

how K-means clustering first identifies the cluster ‘centres’. To consistently handle the occurrence

of empty bins, the code was implemented to identify the data point with the lowest probability of

belonging to its current cluster and move it into the empty bin. With n empty bins, the n worst

data points were used. This eliminated the problem of empty clusters allowing clustering to always

run to completion.

4.3.2 ChIP-seq peak strandedness

ChIP-seq peaks are not strand specific as reads from both strands are analysed to identify peak

locations. The orientation of each peak is not restricted and symmetry can be expected as a result

of strandedness. To account for this symmetry in the Dirichlet algorithm, when assigning a data

point to a cluster, the probabilities of both orientations are tested and the orientation found to

have the highest probability is assigned to the cluster. This doubles the number of calculations

required to place a data point in a cluster but ensures that no bias is introduced by forcing an

orientation onto a peak.

4.3.3 Optimal cluster number

Each different data set will have a different optimal number of clusters. To identify this number

the minimum description length algorithm proposed by [55] was implemented. This approach is

described in the introductory material and relies on the sum of two DL calculations culminating

in eq 5 in [55].

4.4 ChIP-seq peak processing

To address Aim 1.3. and to be clustered using the Dirichlet algorithm, each peak must be repre-

sented by a histogram. In this case, the counts for each bin of the histogram are based on the

read depth around the peak. To generate consistent histograms with equal bin sizes and numbers,
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each peak was given a uniform size of 500bps around the summit of the peak as identified in the

narrow peaks file. A TF peak is ideally less than 500bp so this window will capture the required

read depth information. A constant number of columns is required for the count vectors that make

up the Dirichlet distribution. Each uniform window is broken into segments and the read depth

is counted for each segment to capture the shape and magnitude of a peak. This requires the

narrow peak file to identify peak locations and the bam file to count read depth. It is possible that

reads are counted more than once. A smaller segment size (e.g. 10bp) provides more sensitivity to

the shape of the peak. It also takes longer to cluster and process. Segments of 20bps in a 500bp

window were selected for this investigation however both variables can be changed.

4.5 Genetic location analysis

To address Aim 2.1.1. and 2.1.2.; ChIPSeeker, an R package, was used to annotate ChIP-seq peaks

to both a genomic location and the nearest gene. The TSS region was set to 3000bps upstream

and 1000bps downstream and annotations were made for all peaks in each cluster. Six locations

were used to describe all peaks with each peak having one assigned location: exon, intron, 3’UTR,

5’UTR, promoter and distal intergenic. This reduced the annotations made by ChIPSeeker group-

ing the multiple exon, intron and promoter annotations into a single annotation group respectively.

Each cluster had a set of counts for each location forming a location distribution. A chi-squared

test was then performed with the null hypothesis that the distribution of peak locations is inde-

pendent of the cluster assignment. To determine the contribution of each location category to the

variations in location distributions between clusters, individual enrichment tests were performed

for each cluster and location combination using Fisher’s exact test. The null hypothesis being

that the count of binding in a specific location is independent of cluster assignment. Locations

identified as enriched by the Fisher’s exact test were annotated as over or under depending on

whether the count was higher or lower than the expected value respectively. The expected value

for each cell in a contingency table was calculated using (row total * column total)/N.

4.6 Epigenetic analysis

This methodology addressed Aim 2.2.1. and Aim 2.2.2.. The Broad ChromHMM track was down-

loaded from the UCSC genome browser for H1Hesc, GM12878 and HepG2 cell types (hg19). Each

peak was assigned a chromatin state based on its location according to this track. For each cluster,

the counts of each chromatin state were recorded creating a contingency table with rows for clusters

and columns for each chromatin state. A chi-squared test was performed on the full contingency

table with the null hypothesis that each chromatin state profile is independent of cluster allocation.

Fisher exact tests were also performed for enrichment of each state in each cluster against all other

states and clusters. In this case the null hypothesis was that the count of a specific epigenetic

annotation is independent of cluster assignment. Annotations were annotated as over or under

following the same approach discussed previously.
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4.7 MEME analysis

A MEME analysis was performed on each cluster group of each TF according to Aim 2.3.. MEME

requires centred and uniform data to perform its analysis so the bed file describing the peaks

centred around the summit, calculated prior to clustering, was used for each cluster. Bedtools was

used with the hg19 unmasked reference to obtain fasta files for each cluster in each TF. These fasta

files were then passed to MEME using the meme-chip algorithm with default parameters. The top

DREME motif was selected from each cluster for analysis. DREME limits its motif searches to

8bp.

5 Results

The full summary of results for each TF can be seen in Appendix B.

5.1 Clustering comparison

Each clustering approach was successfully applied to the gene expression dataset containing ten

different conditions. The following results fulfil Aim 1.1.. All were able to generate four different

clusters on which a semantic similarity analysis could be performed.

When comparing the three clustering approaches using semantic similarity, the K-means ap-

proach was able to provide the lowest average similarity scores between clusters across all three GO

term categories as shown in Table 1. Dirichlet clustering had the second lowest average similarity

scores across all three clusters. In the MF and CC categories, Dirichlet clusters had the lowest

pairwise similarity scores across all pairwise tests, 0.79 and 0.86 respectively. The SOM approach

and the randomly separated data points had higher similarities. All clustering approaches were

able to separate data points more effectively than what we would expect to see by chance. Dirichlet

clustering and K-means had the best performance but the benefits of Dirichlet clustering outweigh

those of K-means. Dirichlet distributions do not require normalization so no data is lost during

the clustering process. The alpha values resulting from Dirichlet clusters provide clear information

about the distributions of each cluster or the centres and the evidence or support within each

cluster. It is a flexible approach that is not as sensitive to noise as K-means clustering and is

therefore the clustering approach that will be used in this investigation.

When comparing the three clustering approaches theoretically, the Dirichlet approach is able

to provide the most information in the clustering outcome. This is because the biggest pro of the

Dirichlet algorithm is that it takes raw counts rather than normalized data like K-means and SOM.

Normalisation is the biggest con of both K-means and SOM. More information is available to the

Dirichlet algorithm allowing it to make more informed decisions about how data is clustered.
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Table 1: The average and minimum semantic similarity scores for all pairwise comparisons between

clusters within each approach. Scores across three GO term categories for K-means, Dirichlet and SOM

clustering approaches including a random model for comparison.

MF BP CC

Approach Mean Min. Mean Min. Mean Min.

Dirichlet 0.85 0.79 0.92 0.85 0.93 0.86

K-means 0.84 0.80 0.90 0.84 0.92 0.88

SOM 0.88 0.88 0.93 0.09 0.95 0.93

Random 0.92 0.91 0.95 0.94 0.97 0.95

5.2 Dirichlet algorithm

Adaptations to the Gibbs sampling algorithm that performs Dirichlet clustering were successfully

completed in line with Aim 1.2.. All clusters are populated during clustering removing the issue

of empty clusters (see Section 4.3.1). The probabilities of both orientations of a ChIP-seq peak

belonging to a cluster are checked to ensure the optimal cluster allocation for every peak (see

Section 4.3.2).

The optimal cluster number was successfully identified for each of the ten different TF datasets.

The change in DL as cluster number increases can be viewed graphically in Figure 2 using SRF

as an example. The DL plot was similar for all TF datasets with a gradual decline to the minima

followed by a sharp incline in description length after the optimal cluster number has been reached.

After the incline, two trends were apparent, either the DL would continue to gradually increase or

it would begin to gradually decrease again. In the cases where a decrease was observed, a second

minima would never be reached due to the increasing complexity of a model with such high cluster

numbers. The magnitude of the description length value and the number of clusters identified as

optimal varied depending on the number of peaks in the dataset and the variation in peak shape

across the peaks.

5.3 Peak clusters

Data processing was successfully completed (Aim 1.3.) and the clustering process optimised (Aim

1.2. for every TF dataset. Each TF had a set of clusters that could be visualised using the alpha

values of its Dirichlet distribution from the mixture model. For each TF there was little similarity

observed between clusters. The shape of each cluster peak was either unique, or distinguished

by a varied peak height or a change in the alpha sum value. A variety of different peak shapes

were observed with some similarities across TFs. Each TF had one peak with a single summit in

the centre of the plot which levelled off evenly at both sides. This shape can be seen in cluster

1 of SRF and cluster 2 of GABP in Figure 3 and is reminiscent of a bell curve. A bimodal peak

was also a common feature among the different TFs and an example can be seen in cluster 2 of
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Figure 2: A graphical representation of the MDL principle demonstrating how the sum of DLs changes

as cluster number increases. The optimal cluster number is highlighted with a red line where the value

is minimised. This model represents the best representation of the data without introducing unnecessary

complexity with additional clusters.

SRF and cluster 5 of GABP in Figure 3. Other peak shapes included peaks with relatively flat

profiles, peaks with increasing height across the window and peaks with summits not centred in

the window. In each TF, a variety of these shapes could be observed, however clusters with similar

peak shapes also occurred. Where a similar peak shape occurred, for example two centred bell like

shapes, they were always distinguished by height or alpha sum or both. One peak would be higher

than the other indicating increased read depth across the peaks belonging to that cluster. The

alpha sum value for a cluster was often varied between two clusters with a similar shape indicating

that members of the cluster with a lower alpha sum had less evidence or support even though the

same shape was observed. This is most evident in clusters 4 and 5 of MAXH1 in Figure 9.

Although similar shapes were observed across all ten TF datasets, the magnitudes or heights of

these peaks varied and no identical examples of peaks could be seen between any TFs. This pro-

vided the first indications that TFs behave too differently to identify consistent patterns between

different experiments.

Not only do different TFs demonstrate different peak shapes but the same TF in a different cell

type also behaves differently. MAX and RAD21 both had data from H1Hesc and Gm12878 cells

analysed. All four sets of results can be found in Appendix B. Neither TF shared the same dataset

size or optimised cluster number. For MAX, there were no clear similarities between any peak

shapes in the two sets of clusters. For RAD21, some similarities in cluster shape were observed

between clusters 0 and 6 and clusters 2 and 5 from Gm12878 and H1Hesc respectively. Although

the shapes shared similarities, the heights of the peaks varied and the H1Hesc result contained nine

clusters compared to four. This suggests that cell type and the accompanying biological factors
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Figure 3: A visualisation of the SRF and GABP clustering results after identification of the optimal

cluster number. Note that the axes are not equal. Each has a unique set of peak shapes represented

by each cluster. The alpha values for each peak were normalised to show the shape. The changes in

alpha sum are also represented by the thickness of the line identifying clusters which are based on more

evidence. For each cluster, the number of peaks in the cluster has been reported in the legend.

from different cells affect the peak shapes generated by ChIP-seq.

5.4 Location analysis

For each TF, each individual cluster group demonstrated a set of locations that differed from all

other clusters. This can be visualised in Figure 4 where the location profiles of GABP and SRF

are shown. A clear visual relationship between peak shape and binding location was observed

within each TF providing a result for Aim 2.1.1.. A Chi-squared test was able to demonstrate this

in some TFs, for example SRF with a p-value of 8.39e-06. However, where the changes were not

as severe, the significance was lost in the high degrees of freedom required for the test. Where

the variations of each location distribution were visually obvious but not significant according to

the Chi-squared test, the individual analyses of each location within clusters provided a clearer

description of which locations were varied in which clusters. This secondary set of location results

follows Aim 2.1.2. and is referred to as individual locations.

5.4.1 Location profiles

For almost every TF, one cluster had a profile of locations that was highly similar to the distribution

we would expect to see according to the full set of peaks. In Figure 4 this can be seen in cluster

2 and 5 of GABP and cluster 1 of SRF when compared to the column showing the expected

distribution. After identifying all clusters that best represented the expected distribution, their

peak shapes were analysed to identify any patterns. Four TFs showed a bell shaped peak and four

showed a flatter and lower peak with no identical matches in either set. GABP had two cluster
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groups that were highly similar to the expected distribution - one with a bell like shape and one

with a clear bimodality. MAX in the Gm12878 cell type had no cluster group that represented

the expected distribution well. No distinct pattern was evident linking the cluster showing the

expected distribution of locations and peak shape.

Location profiles demonstrating the most unique distributions or lacking peaks in specific lo-

cations (e.g. no binding in 3’UTR) were also compared to peak shape to determine patterns that

could be observed across multiple TFs. Again, a variety of peak shapes were associated with highly

variable location profiles.

When comparing MAX and RAD21 results between the two cell types, RAD21 again shared

more similarities than MAX. For MAX, the Gm12878 dataset had a higher percentage of promoter

binding while the H1hesc dataset showed a higher percentage of distal intergenic binding. The

clusters previously identified to have similar peak shapes in RAD21 did not share similar binding

location profiles indicating that comparing between TF results is not the best use of this modelling

approach. Instead, it provides added layers of information to individual experimental datasets.

5.4.2 Individual locations

Analysing individual locations identifies more specific patterns within each cluster for a TF. It

also allows identification of significantly over or under represented locations. Figure 5 shows the

individual tests for the each TF. In the SRF results, each group has a distinct pattern of enriched

locations. Cluster 2, that best representing the expected location profile, has no significantly

enriched locations. The other four clusters show over or under enriched intronic and/or promoter

regions. In GABP, we saw two clusters following the profile of the expected distribution, the

individual tests have not clarified this outcome as both clusters show no enriched locations. Clusters

3 and 4 also demonstrate the same pattern of individually enriched locations however the location

profiles appear to differ.

Cluster 0 in MAXH1 and cluster 6 in SP1 both have promoter under represented and intron

and distal intergenic over represented however the peak shapes associated with either cluster do

not share any similarity in shape. Very few clusters shared the same significantly over and under

enriched peaks.

RAD21 and MAX had their individually enriched locations compared and neither TF shared

similarities between the two cell types. In RAD21, the H1Hesc cell type data had clusters that

generally had distal intergenic regions over enriched and promoter regions under enriched. In the

Gm12878 cell type data the clusters had a mix of over and under enriched results for the same two

locations.

Within a TF, each location profile is dependent on its cluster assignment providing a result

for Aim 2.1.1.. The individual locations also vary depending on cluster assignment providing a

result for Aim 2.1.2.. Within a TF, peak shape is linked to binding locations. A global pattern

linking peak shape to an expected location profile or set of enriched locations could not be found

providing a negative result for Aim 2.1.3..
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Figure 4: A visualisation of the genomic location profiles for the binding sites represented by the peaks

in each cluster from SRF and GABP. The profiles demonstrate that each cluster has a different set of

genomic locations and the Chi-square test results both show that these profiles are dependent on cluster

assignment. The column to the left represents the profile that would be expected across all peaks.

5.5 Epigenetic analysis

A similar pattern of results to the location analysis was observed for the epigenetic analysis. Within

a TF, each individual cluster demonstrated a profile of chromatin states that differed from all others

providing a result for Aim 2.2.1.1.. This relationship can be observed in Figure 6 where profiles

for GABP and SRF are shown. Visually, it is apparent that there is a relationship between cluster

assignment and epigenetic profile but the Chi-squared test is not effective in demonstrating this due

to such high degrees of freedom with so many chromatin states assessed (15 states). Following Aim

2.2.1.2., the enrichment of individual chromatin annotation within clusters provided a secondary

result that was combined with the full profile analysis.

5.5.1 Epigenetic profile

In the location profiles, one cluster tended to have a distribution similar to the expected distribution

for every TF. Looking at the same cluster and comparing the epigenetic profile to the expected

profile, fewer similarities were observed. In Figure 6 for SRF, cluster 1 remained the most similar to

the expected profile and this pattern was observed in five other clusters. In GABP, cluster 5 shows

more similarity to the expected distribution than cluster 2 providing a means of differentiating the

two clusters. Cluster 2 is lacking peaks annotated as Repetitive/CNV indicating a link between the

two unique peak shapes (bell shaped and bimodal) and epigenetic state. Although the two clusters

had similar location profiles, the differences in the epigenetic profiles provide an explanation for the

variations in peak shape. This is an example of information provided by this modelling approach

that can clarify TF interactions and binding modes. The remaining five TFs did not contain
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Figure 5: A visualisation of the individual Fisher exact test results for the SRF and GABP clusters. The

individual tests show which specific locations are linked to the dependency between cluster assignment

and genomic location. They further demonstrate the differences between each cluster. Significant results

are green if the count was higher than the expected value and red if the count was lower than the expected

value.

clusters with profiles that looked similar to the expected profile.

With a large number of annotations, the variations observed within TFs and between TFs were

difficult to observe and compare. No global patterns based on the full distribution of chromatin

annotations were identified providing a negative result for Aim 2.2.3..

Comparing the two MAX datasets, in the Gm12878 cell type, all clusters show high percentages

of heterochromatin, transcription elongation and weak transcription annotations. In contrast, the

H1Hesc cell type shows lower percentages of a larger number of annotations. The exception being

cluster 6 where the repetitive annotations show a striking majority. Comparing the two RAD21

datasets returned similar results to MAX in the Gm12878 cell type showing high percentages of the

same annotations . The RAD21 H1Hesc dataset had a higher percentage of insulator and poised

promoter annotations. Cell type plays a significant role in the epigenetic profile of the same TFs.

In the MAX H1Hesc results, cluster 6 showed a majority of repetitive annotations which was

not observed in any other cluster. The peak shape of this cluster was sharp and higher than any

other peak. In SRF, cluster 2 had a noticeably higher percentage of weak enhancer and repetitive
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Figure 6: A visualisation of the epigenetic annotation profiles of SRF and GABP. The profiles demonstrate

that each cluster is defined by a different epigenetic environment. The Chi-square test was not successful in

demonstrating the dependence of epigenetic annotation to cluster due to the high degrees of freedom. The

visualisation is, however, striking. The column to the left represents the profile that would be expected

across all peaks.

annotations while also showing the lowest percentage of heterochromatin. The peak shape of

cluster 2 was bimodal while all others showed a single peak or a wide shape. In both cases, the

epigenetic profile identified features unique to a cluster that could quickly be linked to peak shape.

Although both TFs saw an overrepresentation of repetitive annotation, the two associated peak

shapes were not similar. Within each TF, the peak shape was distinct with a clear biological

outcome in chromatin state providing a result for Aim 2.

5.5.2 Individual annotations

Differences in chromatin annotations were observed when looking at the epigenetic profiles. Follow-

ing Aim 2.2.1.2., individual annotations allowed analysis of which annotations were over or under

represented. Each cluster group for each TF showed differences in which annotations were over or

under represented. This is evident in Figure 7 where the individual results for SRF and GABP are

reported. In both TFs, each cluster has a unique set of enriched annotations. Where the location

could not completely separate the clusters, the epigenetic results are able to identify differences.

Clustering peaks based on shape leads to significant variations in chromatin annotations which are

linked to TF binding and function.

Cluster 2 in SRF, 0 in RXRA and 2 in TBP all showed over enriched repetitive annotations

and a bimodal peak shape. Cluster 4 and 5 in GABP and 1 and 6 in SP1 also have bimodal shapes

but are not enriched in repetitive annotations. No pattern could be found that held true across

all TFs indicating Aim 2.2.3. has a negative outcome.

In section 5.4.2, cluster 0 in MAXH1 and 6 in SP1 were identified as having the same indi-

vidually enriched locations but no peak shape similarity. Combining the individual enrichment
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Figure 7: A visualisation of the significance values for each individual Fisher exact test on the annotations.

The individual tests show that enrichment of specific annotations is dependent on cluster assignment. Each

cluster shows a distinct set of enriched annotations for both TFs. Significant results are green if the count

was higher than the expected value and red if the count was lower than the expected value.

results for chromatin annotations, we see that cluster 0 in MAXH1 is over enriched for active

promoter and strong enhancer while cluster 6 in SP1 has no enrichment of active promoter and is

under enriched for strong enhancer. The only similarity between the two cluster groups is an over

enrichment of weak promoter. This is an example of the intricate layers of information that affect

the outcome of TF binding.

The disparity between the two cell types for RAD21 and MAX continued into the individual

annotation analysis. The H1Hesc cell type showed a number of enriched annotations across all

clusters while the Gm12878 cell type had fewer enriched annotations for both TFs.

For Aim 2.2.1.1. the epigenetic profiles within each TF were dependent on cluster assignment.

This dependency is further observed in the individual enrichment tests of each annotation indi-

cating which specific annotations are linked to each cluster assignment. Epigenetic analysis also

provided clarification where a relationship between peak shape and location could not be found.

No global patterns were identified linking chromatin annotations to peak shape or location.
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5.6 MEME analysis
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Figure 8: The motifs generated by

MEME for each cluster in the SP1

dataset. Clusters 0, 2 and 3 show

the SP1 motif while the others show

NFY as the most enriched motif in

the DREME results.

Variations in sequence were captured by identifying a motif for

every cluster addressing Aim 2.3.. Every TF experiment con-

tained at least one cluster which returned the expected motif

for the TF. The only exception being TBP which has a com-

plex motif that is not well resolved. How sequence is related

to peak shape is not clear from comparing motifs. Consen-

sus motifs lack specific detail about the variety of enriched

sequences. The observed changes in motifs within a TF indi-

cate that different clusters are enriched for different sequences.

At least one cluster in every TF had a motif with a distinct

difference. In SRF, the motif for cluster 0 was longer than any

other motif. As seen in Figure 10, clusters 0-4 contained the

MAX motif with cluster 2 the only one to represent it as a

6bp motif. Cluster 5 and 6 did not show the MAX motif.

The remaining clusters in each TF showed position specific

changes within the motif. In SP1 in Figure 8, cluster 1 and 4

share the same 5bp core of their motifs: CCAAT. In cluster

1, this core is preceded by an enriched [GA] then followed by

an enriched [CG]. In cluster 4, the core is not preceded by

anything and is followed by an enriched [CGA]. It is minor

changes to the motif, like identification of a third nucleotide

present in the sequence at a specific position, that can indi-

cate variation in sequence that will influence binding. Similar

changes can be seen in Figure 10 for the MAXH1 results in

clusters 0-4. Small changes like this were present in all TF

results including comparisons between the RAD21 and MAX

sets of results.

SP1 showed two distinct motifs between all 8 clusters. In

cluster 0, 2 and 3 the SP1 motif is the top hit while the other

clusters contained the NFY motif as the top hit. This indicates an interaction between the two TFs.

Cluster 0 and 2 also share the same enriched locations and similar enriched epigenetic patterns

while cluster 3 is different. Cluster 3 shows over enrichment in transcription elongation and active

promoter while cluster 0 and 2 show under enrichment as well as other variations. The SpaMo

results indicated that in cluster 0 and 2, the SP1 and NFY motifs were spaced significantly close

to one another. This result was not observed in cluster 3. The clusters with NFY as the top hit

were more likely to be spaced near another NFY site than an SP1 site.

Cluster 6 of MAXH1 had a high proportion of binding in repetitive regions. The motif associ-

ated with this cluster is unique from all other results and is not recognized in a TOMTOM search.
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Repetitive sequence has a confounding effect on motif searches when using an unmasked fasta file.

Using a motif to represent changes in sequence is not the most effective approach as consensus

motifs, such as those provided by MEME, are known to mask the detail represented within the

sequence. A means of exploring the sets of significantly enriched sequences within a fasta file is

under development within the Bodén group but was not used in this analysis.

5.7 The impact of alpha sum

The MAXH1 results summarised in Figure 9 contained an example of two clusters sharing similar

shape but different alpha sum. Comparing the location profiles and individual location results of

cluster 4 and 5, clear differences can be observed. Cluster 5 is over enriched for promoter binding

and cluster 4 is under enriched for promoter binding. Cluster 4 is also more likely to have binding

in intronic and distal intergenic regions.

The same can be seen in the epigenetic set of results with cluster 4 over enriched for weak

enhancer and transcription elongation and under enriched for poised and weak promoter, repetitive

annotations and active promoter. In contrast, cluster 5 was over enriched for active and weak

promoter, and strong enhancer annotations.

The motifs for cluster 4 and 5 also vary significantly. Cluster 4, with more evidence, contains

the expected MAX motif as the top result. Cluster 5, contains a motif with no relation to MAX

and an E-value that is only just significant. The peaks identified by cluster 5 appear to be noise

or unrelated to MAX binding.

6 Discussion

TFs are regularly studied using ChIP-seq experiments but no one has previously explored the

biological significance of ChIP-seq peak shapes. We implemented and applied a Dirichlet model

to cluster ChIP-seq peaks as a novel approach to exploring peak shapes. Using this model, we

made a number of specific observations providing new levels of detail about TF binding. Specifi-

cally, we successfully clustered ChIP-seq peaks based on their shape, density and magnitude then

demonstrated how each cluster contains unique, biologically relevant, features. We were also able

to explore these features in depth using statistical tests.

We showed that Dirichlet clustering is a novel modelling approach that performs comparably

to K-means clustering and outperforms SOM when applied to gene expression data (Aim 1.1.).

Our implementation has improved sensitivity through its ability to analyse both orientations of a

ChIP-seq peak to account for the strandedness and potential symmetry of ChIP-seq results (Aim

1.2.). Our approach results in evidence based clusters providing a new way to identify and interpret

noise in the data. Existing clustering approaches are sensitive to noise. A means of identifying

optimal cluster number is also a benefit to any modelling approach related to clustering.
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Figure 9: A summary containing the MAX peak shapes, genomic location analyses and epigenetic analyses

in the H1Hesc cell type. This figure helps illustrate how all the tests relate to one another to help identify

the different binding modes of MAX. For example, cluster 6 has a distinguished peak, a high percentage of

distal intergenic binding and is over enriched for distal intergenic binding, a high percentage of repetitive

annotations and over enrichment for repetitive annotations. The peaks in this cluster share a unique set

of biological features.
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Figure 10: The motifs generated

by MEME for each cluster in the

MAX dataset in the H1Hesc cell

type. Clusters 0-4 show the MAX

motif while clusters 5 and 6 show

very distinct results. The motif from

cluster 5 is common and general and

has a large number of significant hits

when a match was searched for us-

ing TOMTOM (MEME). Cluster 6’s

motif had three significant hits, none

from TFs known to interact with

MAX.

Our model shows that a variety of peak shapes exist in each

dataset that can be successfully clustered (Aim 1.4.). Similar-

ities in peak shapes were observed between TFs but we no-

ticed that although these similarities exist, there is too much

variation for these shapes to be comparable across TFs. Bio-

logically, where height was the differentiating feature between

two cluster shapes, the variations in read depth can be linked

to binding affinity with a higher peak indicating higher affinity

[27]. Our model can therefore separate binding events based

on affinity as well as peak shape. Identifying which binding

events occur with higher or lower affinity will allow researchers

to analyse them in isolation resulting in new theories about TF

binding modes.

We also saw examples of peaks that were differentiated

by alpha sum demonstrating our model’s ability to use the

support or evidence of a peak to further separate them. We

observed in MAXH1 that cluster 4 and 5 were differentiated

by alpha sum leading to variations in genomic location, epige-

netic annotations and motif. We identified the peaks in clus-

ter 5 as noise and irrelevant to the binding outcomes of MAX

in H1Hesc. In previous experiments, these two sets of peaks

would have been treated equally however our model has shown

that they represent different events and should be analysed in

isolation to determine their true link to binding.

In our analysis, we show that genomic location is depen-

dent on peak shape (Aim 2.1.). We did not observe any global

patterns linking peak shape and genomic location across dif-

ferent TFs. Where identical patterns of individual location en-

richment were observed between TF clusters, the peaks shapes

were not consistent. Instead, we observed that each cluster

group has a different set of locations where a TF is more likely

to bind. Our model allows analysis of the different location

patterns unique to each TF based on clustering. It is now possible to understand where different

binding events, defined by our clusters, occur; painting a clearer picture of a TFs interactions with

DNA.

Our model is also able to show that the epigenetic environment around the peaks is dependent

on cluster assignment or peak shape (Aim 2.2.). Similar to the location analysis, no global patterns

were observed linking peak shape and epigenetic environment. We saw that where similarities

existed between location profiles of different clusters but not the peak shape, the epigenetic profile
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of the clusters was different providing evidence that the epigenetic environment influences peak

shape more than the general location of binding. A researcher investigating a TF can use this

epigenetic data to describe the different epigenetic states surrounding subsets of peaks and explore

the effect state has on outcomes such as activation or repression of target genes.

Clusters identified by our model demonstrate variations in enriched motifs (Aim 2.3.. We

observed both minor variations in motif and changes that indicate enriched binding of different

motifs. We showed that motif variations could be linked back to epigenetic profiles to help explain

variations. We could not link motif changes to specific peak shapes. Small variations in the motif

indicate presence of different nucleotides at specific positions in the sequence. Single nucleotide

changes influence the binding outcomes of a TF. Our model is able to separate peaks into clusters

that demonstrate variation in sequence that is significant enough to alter the motif. Consensus

motifs are known to mask features of the sequence and a means of exploring sequence enrichment

without using a motif is required to further explore this relationship between peak shape and

sequence content.

It has been shown that TF binding is complex and relies on many features. Our model supports

that claim by identifying no global patterns between TFs and showing how no single biological

feature (e.g. genomic location) can predict the peak shape or vice versa. We also observed that

the same TF in a different cell type will exhibit remarkable differences in all aspects reported by

the model. What our model does achieve is a means of isolating binding events based on peak

shape and demonstrating the biologically significant differences between the binding events. It

allows exploration of subsets of peaks that have been shown to behave differently. By providing

this detailed information, TFs can now be explored in more depth based on existing experiments

using our new approach.

6.1 Future directions

The current model is limited in its exploration of biological features potentially linked to peak

shape. The scope of this project can be extended to explore many more features and provide more

refined information about TFs. The concept of clustering by peak shape has more applications

than what has been explored here. Clustering could be applied to TF families to break down

each set of peaks, identify the biological features of each cluster then compare between family

members to identify similarities or differences. TFs known to bind as dimers could have their

peaks clustered and the results combined with in vitro experiments to explore sequence differences

and determine whether peak shape is linked to binding of different dimers. TFs which are known to

bind cooperatively could be explored to identify a link between peak shape and which cooperative

interaction is occurring.

The model itself could also be refined by exploring the window size used around the peak

summit and the segment size used to bin read depth counts. Expanding the window will allow

more unique shapes to be identified by exploring further to either side of the summit. This could
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also help identify other TFs binding close to the TF of interest. Decreasing the segment size could

improve sensitivity and increase the variety of peak shapes identified. The data supplied to the

model could also be varied. For example, the threshold for significant peaks could be dropped

allowing more peaks to be analysed. The clustering approach can then help identify noisy peaks as

noisy peaks will contain less evidence and be separated into their own cluster groups. This would

reduce false positive results in the final set of peaks. There is a possibility that low affinity peaks

with better evidence would then be identified as true binding events improving the false negative

rate of peak calling.

Sequence content is key to TF binding due to its sequence specific nature. Incorporating

sequence into the model would allow the shape and sequence to be modelled concurrently resulting

in clusters that are more specific to TF binding events.

The potential applications and future directions of this model are significant and clearly indicate

the importance of what we have developed. Our model has the potential to refine the way we study

TFs and generally improve our knowledge of regulation in organisms.

7 Conclusion

TF binding is a complex process that is currently studied using techniques that do not provide all

the information required to completely understand the process. We created a model that clusters

ChIP-seq peaks based on shape, density and magnitude then successfully links each cluster to

its unique biological features. The model has not yet reached its full potential but already the

potential applications are widespread. New modelling approaches, such as this one, are essential

for unlocking the complex aspects of regulation in the genome.
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Appendices

A ChIP-seq

A.1 Experimental approach

In ChIP-seq experiments, cells are first treated with formaldehyde to crosslink DNA-associated

proteins to the DNA. DNA is then fragmented using sonication and protein bound fragments are

targeted by a specific antibody. Immunoprecipitation (IP) collects fragments that are bound by the

antibody. The crosslinks between the protein and DNA are then reversed and the fragments create

a library that is analysed using high-throughput sequencing. The protein of interest is referred

to as ‘ChIPed’ after the immunoprecipitation step has occurred. Sequencing requires ligation

of oligonucleotide linkers or adapters to both ends of the fragments followed by next-generation

sequencing (NGS) [2, 35, 32, 43, 21, 34, 18, 52]. For the IP to be successful, a highly specific

antibody against the DNA-binding protein of interest is required. This requires prior knowledge

of the existence of a DNA-binding protein or histone modification. If the antibody is not specific

enough, the resulting data will be noisy with non-specific proteins being pulled down with the

true binding events [15, 32]. ChIP-seq experiments also require a very large number of cells. This

limits the types of cells on which ChIP experiments can be performed. The large cell requirement

also has the effect of masking interactions between the protein and target regions which are only

present in a small number of cells.

The application of NGS allows higher resolution, lower noise and higher genomic coverage when

compared to the ChIP-chip assay. ChIP-chip uses microarray hybridization after amplification of

fragments and is an older, but still frequently used technique [18].

A.2 Data processing and quality control

ChIP-seq experiments produce sequencing tags from the ChIP library across the whole genome

[10]. Library complexity must be sufficient with low-complexity libraries, those containing a large

number of redundant reads, indicating a failed experiment where insufficient DNA was collected.

The failure could be due to antibody quality, amount of cell material, over-amplification of PCR

or over-cross-linking. In low-complexity libraries the same PCR-amplified products are sequenced

repeatedly leading to many small peaks detected causing a high false-positive rate. Removal of

redundant reads is one approach to correct low-complexity [2, 15].

Often, single end 25-35bp reads are used in ChIP-seq studies however paired end reads are

also used and can resolve biases particularly related to repetitive sequence [8]. To effectively

identify protein binding locations, the sequencing experiment must provide sufficient coverage by

sequencing reads (sequencing depth). The sequencing depth required to effectively analyse ChIP-

seq data depends on the size of the genome and the number and size of binding sites of the protein
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[2, 15]. For example, a sequencing depth of 20 million reads should be adequate for a mammalian

TF with thousands of narrow binding sites. Histones are proteins with broader binding sites and

require more depth, between 40 and 60 million reads, for effective ChIP-seq analysis [2]. Increased

sequencing depth can allow detection of sites with lower levels of enrichment. After sequencing

is complete, target regions or binding sites are identified by the aggregation of reads or tags at

specific locations in the genome. To identify these regions, a number of processing steps with

associated quality control measures must be undertaken. There are two key steps in ChIP-seq

analysis; read mapping and peak calling. Prior to read mapping, the quality of reads produced

by sequencing must be explored. This quality control is to identify possible sequencing errors or

biases that could have negative effects on read mapping and all consequent analyses. Sequencing

technologies, such as Illumina, are capable of filtering poor quality reads as part of the sequencing

process. FastQC is a tool that analyses a number of features to determine the quality of a set of

reads. If there are features in the FastQC report that are not meeting quality thresholds, steps

should be taken to trim or filter the problem reads [2, 1].

Once the quality of reads has been validated, they can be mapped back to the reference genome.

Mapping tools available including Bowtie, BWA, SOAP or MAQ. Each has their own strengths

and weaknesses particularly related to speed and memory requirements. Most of the short-read

mapping tools are effective for mapping ChIP-seq data with limited differences in results. Bowtie2

is a popular tool which has been validated for mapping short read sequences and used in ChIP-seq

experiments previously [33, 31]. It will be used for mapping in this experiment. Mapped reads

should only have 2-3 mismatches however this can vary depending on the accuracy of the sequencing

technology in use [40, 35]. Ideally above 70% of the reads will be uniquely mapped. Less than 50%

uniquely mapped reads can indicate problems with the experimental approach including inadequate

read length or problems with the sequencing platform. There exist ChIPed proteins that will always

have an unavoidably low percentage of uniquely mapped reads, for example if the protein binds

frequently in repetitive DNA. In this situation, paired end reads have been shown to improve

mapping across repetitive regions of DNA. Prior to peak calling, mapped reads must be assessed

using quality metrics such as strand cross-correlation analysis (SCCA) or IP enrichment estimation.

This quality control step will detect experimental failures such as insufficient sequencing depth or

insufficient enrichment by immunoprecipitation. Duplicate sequences need to be removed as well

as non-unique mapped reads.

SCCA measures the degree of immunoprecipitated fragment clustering to assess data quality.

The main principle behind ChIP-seq is that high-quality target regions will show clustering of

sequence tags. SCCA uses this principle and the fact that enriched tags on the forward and reversed

strands are separated by a distance from the binding site centre dependent on the fragment size

distribution. ChIP DNA fragments are sequenced from the 5’ end and when aligned to the genome

will result in two peaks, one on each strand. The two peaks will flank the binding location of the

ChIPed protein or modification. Cross-correlation of the tags will provide the optimal detection of

target regions as well as provide data for quality control [40]. The tags on one strand are shifted by
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k to overlap with the opposite strand and the Pearson correlation of the two read density profiles

is taken. The cross-correlation score peaks at the shift corresponding to the fragment length

and the shift corresponding to the read length. These two peaks indicate the ideal combination

of reads for peak calling. From the cross-correlation results, normalized strand cross-correlation

coefficient (NSC) is measured as the ratio between cross-correlation at the fragment length and the

background cross-correlation. The ratio between cross-correlation at the fragment length the read

length is known as the relative strand cross-correlation coefficient (RSC). Together, they reflect

the signal-to-noise ratio in ChIP-seq data. A successful ChIP experiment would generally have

NSC ≤ 1.05 and RSC ≤ 0.8 [2, 32].

To predict the target regions for the ChIPed protein or modification in the genome, regions

with significant numbers of mapped reads or peaks must be found. A number of peak calling

algorithms exist to make these predictions. In most situations, accurate peak predictions rely on

the use of a control sample as a background. There are a number of ways a control sample can be

generated. The most popular is to perform the ChIP experiment on a second biological replicate

but to skip the IP step. This way, the reads generated will represent the expected background

levels of DNA in the sample. A negative control can also be generated by repeating the ChIP

experiment on a sample with the DNA-binding protein or modification knocked out.

A.3 Peak callers

Peak callers search for regions in which tags are enriched in the target sample and not the control

sample. The key differences between the different peak callers is the statistical method applied

to identify enriched regions and the processing of read counts prior to enrichment analysis. Peak

calling programs all follow the same basic approach to calling peaks. First, a profile is created

from the sample and control data (if available) in which the tag data is smoothed. For example,

CisGenome and spp use a sliding window of fixed width and replace each strand specific site with

the tag count summed over the entire window, centred at the site [23, 28]. Tag aggregation and

kernel density estimation are other examples of approaches to profiling the tag data. Next, a

statistical model is used to identify enriched regions. It is possible to do this without background

or control data however it is not as accurate. The simplest models analyse height based on the

number of reads such as CisGenome. Model-based analysis of ChIP-seq (MACS) and spp both

use variations of a Poisson model [11, 28]. More complex statistical models can be also be used.

For example, BayesPeak is a peak caller which uses a fully Bayesian hidden Markov model to

detect enriched locations [48]. Based on the statistical model, peaks are ranked by number of

reads, a p-value or a q-value and a cut off is applied to select the best or most likely results

[41, 40, 2]. Due to the diversity of DNA-binding proteins, cell types, conditions, modifications

and factors being assayed; common guidelines for designing, performing and processing ChIP-seq

experiments and their resulting data will not be appropriate for all situations [15]. A challenge

to peak calling is different DNA-binding proteins and their associated antibodies result in three
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different types of enriched regions: sharp/punctate/narrow, broad and mixed [40]. Sharp peaks are

typical of TFs or histone modifications at regulatory elements. Broad regions are more typical of

histone modifications that mark domains such as repressed or transcribed regions. RNA polymerase

generates peak data that can contain both broad and narrow regions due to the dynamic nature of

its interactions with DNA. Current peak calling tools require prior knowledge of the type of peak

expected based on the tag data. MACS and spp can handle both broad and narrow peaks but

require the distinction to be specified by the user. Both use a Poisson model, with slight variations,

which allows consistent p-values to be obtained across peaks by using both the ratio of mapped

reads between the target and control samples as well as the absolute tag numbers [40, 28, 11].

MACS is optimised for single end reads while spp is optimised for paired end reads. MACS also

shifts the tags to create a uniform peak for each location rather than strand specific peaks. MACS

is also more user friendly and was selected as the best peak calling tool for this experiment.
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B TF results
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B.3 MAXGm
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